EUROGRAPHICS 2012 / C. Andujar, E. Puppo

Short Paper

Efficient Evaluation of Semi-Smooth Creases in
Catmull-Clark Subdivision Surfaces

M. NieBner! and C. Loop2 and G. Greiner'

!'University of Erlangen-Nuremberg
ZMicrosoft Research

Abstract

We present a novel method to evaluate semi-smooth creases in Catmull-Clark subdivision surfaces. Our algorithm
supports both integer and fractional crease tags corresponding to the RenderMan (Pixar) specification. In order
to perform fast and efficient surface evaluations, we obtain a polynomial surface representation given by the semi-
smooth subdivision rules. While direct surface evaluation is applied for regular patches, we perform adaptive
subdivision around extraordinary vertices. In the end, we are able to efficently handle high-order sharpness tags
at very low cost. Compared to the state-of-the art, both render time and memory consumption are reduced from
exponential to linear complexity. Furthermore, we integrate our algorithm in the hardware tessellation pipeline of
modern GPUs. Our method is ideally suited to real-time applications such as games or authoring tools.

1. Introduction

Catmull-Clark subdivision surfaces [CC78] are now stan-
dard in today’s computer generated feature films. Semi-
smooth creases [DKT98] as specified by RenderMan [Pix05]
are an important extension that allow realistic edges to be de-
fined while keeping memory footprint small. This is particu-
larly useful when animating characters since only a small
number of control vertices need to be updated. Hardware
tessellation on today’s GPUs makes the use of Catmull-
Clark subdivision surfaces attractive for real-time applica-
tions. However, hardware tessellation requires direct surface
evaluation rather than iterative refinement as provided by the
subdivision rules. NieBner et al. [NLMD12] perform adap-
tive subdivision around features such as extraordinary ver-
tices or semi-smooth creases and process the resulting nested
regular bicubic patches with hardware tessellation. This pro-
vides better performance than uniform subdivision; how-
ever, at semi-smooth crease tags there is still an exponential
growth in the number of patches being processed.

The key idea of our method is to analyze the polynomial
structure of semi-smooth creases and directly evaluate these
rather than applying iterative subdivision. While we directly
evaluate regular patches with sharpness tags, we use adaptive
subdivision around extraordinary vertices. This turned out
to be faster than performing a Stam-like evaluation [Sta98]

(© The Eurographics Association 2012.

for irregular patches. Compared to previous feature adaptive
subdivision, the number of patches being created by subdivi-
sion is only linear with respect to sharpness tags and tessella-
tion density (instead of exponential). This results in a consid-
erable performance gain and reduces memory consumption
significantly (see Figure 2).

2. Previous Work

Catmull-Clark subdivision surfaces [CC78] are a general-
ization of regular bicubic B-splines to arbitrary 2-manifold
control meshes. Nasri [Nas87] extended the Catmull-Clark
scheme by introducing boundary (a.k.a. sharp) subdivision
rules. These additional rules can also be applied to the
edges of non-boundary patches in order to obtain creases
[HDD*94]. Further, DeRose et al. [DKT98] introduced
semi-sharp creases that allow modelling edges with tighter
radii of curvature, without a significant increase of memory.
A semi-sharp crease is defined by subdividing s times using
sharp (i.e., boundary) subdivision rules, followed by subdi-
vision using the standard rules (smooth rules).

The capabilites of modern GPUs allow for massively par-
allelized subdivision. This can be done by either using the
graphics pipeline [SJP05] or using GPGPU APIs such as
CUDA (e.g., [PEO09]). However, performance is limited
by the high memory-to-compute ratio. Hardware tessellation

M. Niefsner et al. / Efficient Evaluation of Semi-Smooth Creases in Catmull-Clark Subdivision Surfaces

creates geometry on-chip and allows rendering with a min-
imal amount of memory I/O. While this is ideal in terms of
performance, only direct parametric patch evaluation is sup-
ported.

A method to directly evaluate Catmull-Clark surfaces at
arbitrary parametric values was developed by Stam [Sta98].
Its key idea is to perform an eigenvalue decomposition of
the subdivision matrices to obtain a set of bicubic eigen-
basis functions for Catmull-Clark patches. While orginally
proposed for the CPU, it is easily mapped to the paradigm
of hardware tessellation. Compared to approximate patch-
ing [LSO8], or feature adaptive subdivision [NLMD12], the
performance of Stam’s evaluation procedure is poor. This
can be attributed to its branching and heavy use of floating
point computation.

NieBner et al. [NLMDI12] adaptively subdivide around
features such as extraordinary vertices or semi-smooth
creases using GPGPU compute kernels in order to obtain
regular patches exclusively. With the resulting patches be-
ing all regular, the tessellator can then be used to efficiently
evaluate these patches. They have shown that their feature
adaptive subdivision is significantly faster than Stam evalua-
tion and any iterative subdivision scheme due to its minimal
amount of memory I/O. However, adaptive subdivision cre-
ates an exponential number of patches at edges with semi-
smooth creases, harming performance.

We combine feature adaptive subdivision at extraordinary
points and direct evaluation for regular patches. This allows
us to reduce the number of patches being created by adap-
tive subdivision from an exponential to a linear amount with
respect to the number of subdivision steps. Compared to the
original approach by NieBner et al., this gives a significant
performance improvement (see Figure 2).

3. Evaluation of Semi-Smooth Creases

First, we assume that a patch contains at most a single semi-
smooth crease and does not contain any extraordinary ver-
tices. This is achieved by adaptive subdivision following
NieBner et al. [NLMD12] (see Section 4). We evaluate bicu-
bic B-spline patches using their tensor product form with
parameters u and v. That allows us to simplify the prob-
lem to the curve case with a single semi-smooth crease tag.
Our goal is to transform the control points of a cubic B-
spline curve such that it exactly corresponds to the semi-
sharp crease rules of Catmull-Clark subvidision defined by
DeRose et al. [DKT98].

A uniform cubic B-spline curve can be refined applying
the refinement matrix R (or R,, at a curve boundary):

4.4 00 4.4 00
1 6 10 1 6 10
R=%|0 4 4 0| and R,=5|0 4 4 0
01 6 1 008 0
00 4 4 0 0 4 4

Thus, subdividing the initial curve control points P =
(Po, Py ,P2,P3)T can be represented as P/ = RP. The matrices

R and R, correspond to the smooth and sharp Catmull-Clark
subdivision rules, respectively.

We now split the cubic B-spline curve f(t) = N(t)P (with
N(t) a1 x 4 matrix containing the cubic B-spline basis func-
tions and P defining the B-spline control points) into two
curve segments: the infinitely sharp segment foo(7) defined
for 0 <r < 1—27" and the transition segment fs(¢) to the
crease defined for 1 —27° < < 1.

f(l‘)* fOO(l):N(t)_‘oo fOI’OSZSl—z*s
SO =N@OE for1-27" <1<

In order to directly evaluate the curve we need to obtain
the control points for both curve segments Pso and B;. The
Catmull-Clark subdivision rules for boundaries can be trans-
fered to the curve case using the transformation matrix

N - O O
o O OO

The control points of the infinitely sharp section of the
curve are then given by Poo = Moo P. For fs(f) we use mod-
ified refinement matrices R and R, derived from R and R):

and Rp:%

S = B~
~ = O O

1 0
4 0
&8 0
4 4

SO B~

1
0
0
0

ool —
(=il
BN B~ =

These reduced matrices still subdivide the curve, however,
the set of resulting control points defines only a part of the
curve. This corresponds to fs(¢) which is only valid for z €
J1—27%1].

The control points required to define fs(¢) can be ob-
tained by Rf,ﬁ. However, this results in a wrong parametriza-
tion since the curve’s velocity is changed. Thus, we back-
transform these interim control points using R~ in order to
maintain the original parametrization:

The resulting control points P; define an extrapolated curve,
however, with r €]1 —27°, 1] that curve exactly matches the
desired shape with the parametrization corresponding to the
initial curve. Examining the eigenstructures of R and R,
(both non-defective) allows us to define My = (Rfl)SRf, and
diagonalize:

R, = VRPAfepvR_pl and (R = Vg 'AZ Vi

(© The Eurographics Association 2012.

M. Niefsner et al. / Efficient Evaluation of Semi-Smooth Creases in Catmull-Clark Subdivision Surfaces

Thus, we obtain a simplified My (with o = 2°):

66 66> —56+1 —126°+106—2 606°—50+]1

I—o

- 2
l—o 0 20°+30+1 46—2 1—2¢
M, =-—"—" 2
s 60 0 G+1 % G+1
2
0 1—26 46 —2 M

Further, f(¢) is given by:

) = N({t)MooP for0<t<1-27°
| N@)MP for1 -2 <1 <1

Two such curves with sharpness 1 and 2 are shown in Fig-
ure 1. In the end we can directly evaluate regular patches
with a single semi-smooth crease using f(¢) to construct the
tensor product (fj(u) refers to the evaluation of one row of
the 4 x 4 control points of a bicubic patch):

S(u,v) = (folw), f1 (), f2(u), f3(u))N" (v)

0 1-2" 1-2° 1

Figure 1: Curve segments generated for a particular control
polygon; the sharpness tags shown are s = 0,1,1.7,2. For
s = 0 the curve is a single segment defined on [0, 1]; for s =
1,2 the curves have two sements defined on [0,1 —27"] and
[1—27%1]; for s = 1.7 the curve has three segments defined
on0,1—2"BI =270 12701 ana [1 =271 1]

3.1. Fractional Sharpness

DeRose et al. [DKT98] also specify fractional sharpness as
a linear blend between integer sharpness levels. Hence, it
is required to compute a separate M| and M) and apply
the linear blend manually. This yields three curve segments,
an infinitely sharp part, a linear blend between sharp and
the smaller sharpness factor, and a linear blend between the
smaller and higher sharpness factor; see Figure 1. These seg-
ments are defined by the respective control points Poo, Ps
and ﬁfz

P = Moo P

(© The Eurographics Association 2012.

[

Poo = (1= (5= [s))(R™YIRFIP+ (s— [s))MocP

Bi= (1= (5= [s)RR Pt (5= s (&™HIRPTE

Multiple transform operations can be avoided by directly
computing the required transformation matrices Mg, and
M;:

Mg = (1= (s— [s]))M ;) + (s — [s]) Moo
Ms = (1—(s—[s]))M) + (s — [s]))My

Note that these transformation matrices correspond to
the semi-smooth subdivision rules with fractional sharpness
tags. Now the initial control points are transformed and the
resulting function f(¢) is given by the three curve segments:

foo(t) =N(t)MooP for0<t<1—27L

FO)=X fso(t) =N@)MgP for1—2" <r <1271
() =N@OMP for1—2" Pl <1<

Figure 1 shows an example curve with a fractional sharpness
of 1.7. The computation of the tensor product surface S(u,v)
is the same as for integer sharpness.

4. GPU Implementation using Hardware Tessellation

Since hardware tessellation is fast and memory efficient,
we use it for Catmull-Clark subdivision surface rendering.
NieBner et al. [NLMD12] perform adaptive subdivision it-
eratively around extraordinary vertices (using GPGPU) and
then directly evaluate the resulting bicubic B-spline patches
using hardware tessellation. This turned out to be faster than
Stam’s direct evaluation method. The reason is that the num-
ber of adaptively created patches around extraordinary ver-
tices is only linear with respect to the number of subdivision
steps k (3N - k where N is the vertex valence). They also use
adaptive subdivision around features such as semi-smooth
creases, however this creates an exponential number of sub-
divided patches after k subdivisions (Zk).

We replace adaptive subdivision for creases in regular re-
gions by direct evaluation as shown in Section 3. Adap-
tive subdivision is still applied at extraordinary vertices and
semi-smooth creases with varying sharpness. It is also used
to enforce the condition that regular patches must not contain
more than one semi-smooth crease tag. The benefit of this is
that the number of child patches created by adaptive subdi-
vision becomes linear instead of exponential with respect to
the sharpness tag.

The implementation for regular patches with one edge
tagged sharp is straight forward. In the hull shader we ob-
tain the sharpness according to the patch id and compute
the respective transformation matrix My. Further, the trans-
formed control points of the different curve segments of f(z)
are computed according to M~ and Mj, or in the fractional
case according to Moo, Mg, and M;. The two resulting sets

M. Niefsner et al. / Efficient Evaluation of Semi-Smooth Creases in Catmull-Clark Subdivision Surfaces

(three with fractional sharpness tags) of control points are
then passed to the domain shader, where we determine which
set of control points is required in order to evaluate the sub-
patch according to the domain parameters u, v.

5. Results
% Performance 100 Memory Consumption
€20 s
;’15 M Ours Frac M Ours Int ¥ Previous E 80 #0urs #Previous
E > 60
t o
g1 E 40
c @
gs 2 2
0 e mme wme wee mell mmd mel BN ONEL BN 0 —t—t——a—a—a—a
012345867839 0123456789
Edge Sharpness Edge Sharpness

Figure 2: Performance (rendered with hardware tessella-
tion at a tess factor of 8) and memory consumption for the
Car model (see Figure 3); our method (fractional and inte-
ger sharpness) and previous work (feature adaptive subdivi-
sion [NLMDI12])

Our implementation uses DirectX 11 running on an
NVIDIA GeForce GTX 480. Figure 2 shows performance
and memory consumption of our method (fractional and in-
teger sharpness variant) and previous work (feature adaptive
subdivision [NLMD12]) for the Car model (see Figure 3)
with different sharpness tags. Rendering is performed us-
ing a tess factor of 8. Performance without any sharpness is
the same for all methods since the same number of patches
are being created by adaptive subdivision. Having set sharp-
ness tags to 1 or 2 previous feature adaptive subdivision
is marginally faster due to lower patch setup costs. At a
sharpness above 2 our direct evaluation algorithm is faster.
With higher sharpness tags, feature adaptive subdivision be-
comes significantly slower (note the exponential behaviour).
In contrast, render time using our method remains almost
constant. Render time with our method increases slightly
since we still perform adaptive subdivision at extraordinary
vertices. The same relation between our method and fea-
ture adaptive subdivision can be observed in terms of mem-
ory consumption, however, the memory consumption of our
method is always less. A visualization of the different subdi-
vision levels is provided by Figure 3 (left ours; right previous
work). Also note that our method allows the modification of
sharpness tags at runtime.

5.1. Conclusion

We have presented a novel and GPU-friendly method that
allows efficient evaluation of semi-smooth creases as de-
fined by the RenderMan specification [Pix05]. Our algo-
rithm keeps render time low and memory I/O small, and thus
allows dealing even with high-order sharpness tags. While
we have demonstrated how to integrate direct evaluation of
semi-smooth creases for hardware tessellation, our method

>

Figure 3: Car model consisting of 1519 patches with 314
semi-smooth crease tags (sharpness of 6) rendered with fea-
ture adaptive subdivision (left) and our method (right). Sub-
division levels are indicated by different colors.

can be also used by offline renderers. For instance, subdivi-
sion surfaces with semi-smooth crease tags can be efficiently
ray-traced without costly iterative sudivision.

References

[CC78] CATMULLE., CLARK J.: Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-aided design
10, 6 (1978), 350-355. 1

[DKT98] DEROSE T., KAss M., TRUONG T.: Subdivision sur-
faces in character animation. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques
(1998), ACM, pp. 85-94. 1,2,3

[HDD*94] HoPPE H., DEROSE T., DUCHAMP T., HALSTEAD
M., JIN H., MCDONALD J., SCHWEITZER J., STUETZLE
W.: Piecewise smooth surface reconstruction. SIGGRAPH ’94
(1994), 295-302. 1

[LS08] LooP C., SCHAEFER S.: Approximating Catmull-Clark
subdivision surfaces with bicubic patches. ACM TOG 27, 1
(2008), 8:1-8:11. 2

[Nas87] NASRI A.: Polyhedral subdivision methods for free-form
surfaces. ACM TOG 6, 1 (1987),29-73. 1

[NLMDI12] NIESSNER M., LooP C., MEYER M., DEROSE T.:
Feature adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM TOG (2012). 1,2, 3,4

[PEO09] PATNEY A., EBEIDA M. S., OWENS J. D.: Parallel
view-dependent tessellation of Catmull-Clark subdivision sur-
faces. In HPG ’09: Proceedings of the Conference on High Per-
Sformance Graphics 2009 (New York, NY, USA, 2009), ACM,
pp. 99-108. 1

[Pix05] PIXAR ANIMATION STUDIOS: The RenderMan Inter-
face version 3.2.1, 2005. (https://renderman.pixar.com/products/-
rispec/index.htm). 1, 4

[SJPO5] SHIUE L.-J., JONES I., PETERS J.: A realtime GPU
subdivision kernel. ACM TOG 24, 3 (2005), 1010-1015. 1

[Sta98] STAM J.: Exact evaluation of Catmull-Clark subdivision
surfaces at arbitrary parameter values. In Proceedings of the 25th
annual conference on Computer graphics and interactive tech-
nigues (1998), ACM, pp. 395-404. 1,2

(© The Eurographics Association 2012.

