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Abstract: We present a novel approach that simulates human vision including visual
defects such as glaucoma by temporal composition of human vision in real-time on
the GPU. Therefore, we determine eye focus points every time step and adapt the lens
accommodation of our virtual eye model accordingly. The focal distance is then used
to determine bluriness of observed scene regions; i.e., we compute defocus for all vis-
ible pixels. In order to simulate the visual memory we introduce a sharpness field
where we integrate defocus values temporally. That allows for memorizing sharply
perceived scene points. For visualization, we ray trace the virtual scene environment
while incorporating depth of field based on the sharpness field data. Thus, our al-
gorithm facilitates the simulation of human vision mimicing the visual memory. We
consider this to be particularly useful for illustration purposes for patients with vi-
sual defects such as glaucoma. In order to run our algorithm in real-time we employ
massively parallel graphics hardware.

1 Introduction

Simulating human vision enables beneficial applications for eyeglass manufacturers, treat-
ing physicians, and patients with visual defects. Typically, the human eye is constantly in
motion in order to gather visual information about the environment. While moving, the
eye lens accommodates such that objects of interest appear sharp. That is, the eye lens
adapts its shape and thus its refractive power in order to match the focal plane with those
objects. Since the eye lens has only a single refractive state at each time step, objects not
on the focal plane are unsharp. The human brain memorizes sharply perceived regions (ob-
tained with potentially different refractive states) for some time, thus generating a visual
impression without defocus [HB89].

In this work we simulate this process by employing an eye model that focuses on different



areas of a virtual scene environment. Therefore, within a time step, we first determine
potential focus points by rendering the scene from the current view point (using GPU ray
tracing) and detecting features such as edges or corner points. We then set the eye lens
accommodation (i.e., the refractive power) in order to define the focal plane. Next, we use
the obtained focal plane to compute sharpness values for all observed scene regions; i.e.,
we compute the circle of confusion for all visible pixels. The bluriness, which is computed
every time step, is then temporally integrated into a sharpness field. The sharpness field
consists of sharpness values with corresponding time stamps for all scene locations. The
last step of our approach is to visualize the scene environment under consideration of the
sharpness field. While our approach facilitates the simulation of healthy eyes, a particu-
larly useful application is the illustration of visual defects such as glaucoma [Ger08]. An
overview of our algorithm is depicted in Figure 1.
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Figure 1: Algorithm overview.

For our simulation we employ NVIDIA’s GPU ray tracing framework OptiX [PBD+10].
OptiX provides an API for parallel GPU ray tracing that allows the customization of the
ray tracing steps, for example acceleration structure construction, efficient ray traversal,
shading and intersection computation. In addition, we use CUDA [Nvi11] to parallelize
involved image processing operations whereas Optix’s interoperability functions facilitate
shared data access between the two GPU frameworks. In the end we are able to run our
simulation approach in real-time on current graphics hardware.

To sum up, the contributions of our approach are

• simulation of human vision under temporal aspects,

• real-time execution on current graphics hardware,

• illustration of visual defects such as glaucoma.



2 Previous Work

Simulation of Human Vision Traditional approaches that simulate human vision con-
sider a single time step and visualize simulated results based on a selected eye model. The
first step in such a simulation is to determine the eye lens accommodation. To this end,
Mostafawy et al. [MKL97] introduce the virtual eye that determines its accommodation
based on the distance of observed objects. We use a similar idea since we determine the
refractive power of the eye lens based on the view distance of specific features (see Sec-
tion 3). The disadvantage of this approach is the inability to (correctly) deal with multi-lens
systems such as eyeglasses. Wavefront tracing [K+64, Sta72] is used to avoid this limi-
tation and has been applied for the optimization of the design of eyeglasses [LSS98]. In
addition, wavefront tracing is an integral part of several approaches that simulate human
vision [Bar04], [KTMN07], [KTN10], [NSG12]. While these approaches focus on the
lens system of the human eye, they do not address temporal aspects of human vision.

Visual Defects Most common visual defects are related to the refractive properties of
the eye lens (ametropia) [BP07]. Common cases are hyperopia where the eye is too short,
myopia where the eye is too long, or astigmatism where the eye lens creates two focal lines
instead of a single focal plane. In our work we particularly focus on glaucoma [Ger08].
This disease is mostly caused by increased intraocular pressure that, if unnoticed, damages
the optical nerve. As a result the visual field is significantly affected. Patients suffering
from the disease typically require more time to perceive their environment. Our simulation
resembles this effect as depicted in Section 3.

GPU Ray Tracing Ray tracing [Whi80] is a widely used rendering approach in com-
puter graphics. Since ray tracing resembles light paths on a physical basis, it is essential
for the simulation of human vision. For instance, distributed ray tracing [CPC84] is typi-
cally used to facilitate depth of field effects. In the recent years ray tracing approaches for
GPUs have been developed due to the advancement of such hardware architectures. Aila
and Laine [AL09] propose such an approach that exploits the computational capabilities
of modern GPUs. NVIDIA uses this method in their ray tracing engine OptiX [PBD+10].
We use OptiX for our simulation approach since it provides fast acceleration structure
construction and efficient ray traversal on the GPU.

3 Scene Rendering and Focus Computation

The first step of our simulation is to render the virtual scene environment in order to obtain
color and distance values for each observed scene point. Therefore, we ray cast the scene
using a pinhole camera model for rendering. To achieve real-time framerates for this step,
we use NVIDIA’s ray tracing engine OptiX [PBD+10] that runs on the GPU. Since we
consider the scene environment to be static, we gain best performance employing a kD-tree
for acceleration. Hence, for each frame we obtain a color and depth map depending on the



current (virtual) camera setup. Next, we use that data to determine potential focus points.
Focus points are considered to be features of the color image; i.e., points that are most
likely of visual interest such as edges or corners [Hub88]. Therefore, we perform corner
detection on the previously obtained color data by using the FAST feature detector [RD05].
We then select a single feature (per time step) that we consider to be the most likely focus
point and set the focal plane according to the depth value of the chosen feature. At every
subsequent time step we use a different feature from the obtained feature list. In reality,
the typical timeframe between two features (for a real eye) is 10 to 100 ms [Duc07].

Initially, we select the a relatively centric feature based on a bivariate Gaussian. Then, our
approach tries to select features that are nearby, however, considering a minimal distance
threshold with respect to previously selected features. Thus, we are able to resemble the
motion of a real eye (saccades). Note that if the eye position changes, the feature list is
re-computed for the current view. Figure 2 shows an example scene with features detected
by the FAST detector and the resulting estimated eye movement.

Figure 2: Simulated eye movements of a patient with (right) and without glaucoma (left). The
focused points (green circles) are computed using the FAST feature detector.

Once we determined a certain feature in the current view, we set the focal plane P for the
current frame accordingly. We compute a circle of confusion (CoC) for every pixel based
on this focal plane P and the respective pixel’s depth value D. Hence we obtain the circle
of confusion for each pixel following Demers [Dem04]

CoC =
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where A is the aperture size (i.e., pupil radius, which is about 3.5mm), I is the image plane
(i.e., distance from eye lens to retina, about 25mm) and F is the focal point computed by
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Please note that for each frame the focal plane P is fixed (depending on the chosen feature),
however, each pixel has different depth values D.



Glaucoma To incorporate the visual glaucoma defect in our simulation, we adapt both
the feature selection and CoC computation. Depending on the progress of the disease we
limit the trajectory of focus points over time. Thus, we adapt the probability distribution
function for feature selection accordingly. We might also skip feature selection for a frame
and reuse the feature of the previous frame. In that case we do not need to update the
sharpness field (see Section 4). In addition, we enlarge the CoC of all pixels with respect
to the screen space distance of the selected feature. While healthy eyes also suffer from
this CoC-penalty, the magnitude is significantly larger for glaucomatous eyes [BP07].

4 Sharpness Field

In Section 3 we determine the CoC for every pixel of the current frame. We now intro-
duce the sharpness field, that is a uniform voxel grid with cells corresponding to specific
locations in space. Every cell defines a CoC and a time stamp value defining the bluriness
within the cell. For every subsequent frame, we now integrate the newly obtained CoC
values for every pixel. Therefore, we backproject pixel coordinates (depth value and pixel
index) into world space to determine corresponding voxel cells in the sharpness field. If the
CoC value of a pixel is smaller than the CoC stored in the sharpness field at the obtained
location, we update the voxel with the CoC of the pixel and the current time stamp.

Further, we starve values in the sharpness field depending on the time stamp. Hence, if
a voxel is not updated for a certain amount of time, we increase the CoC accordingly. In
our examples we achieved good results by increasing the CoC by about 1−2% every time
step.

The sharpness field is initialized with infinitely large CoCs, meaning that the region has not
been observed and never been in focus. In addition, we occasionally reset the sharpness
field to its initial state mimicing eye blinks.

5 Visualization

For the visualization of the scene environment, we use the color data obtained by the scene
rendering pass (see Section 3) and the updated sharpness field (see Section 4). For every
pixel in the color image we then determine the corresponding cell in the sharpness field
by backprojecting the pixel coordinates into world space. That allows us to retrieve the
bluriness for a pixel. The CoC is then used to compute the depth of field for each pixel.
Therefore, we distribute filter taps within the CoC and weight them according to a bivariate
Gaussian distribution. This is similar to the approach of Riguer et al. [RTI03], however, in
contrast to their method, our Gaussian distributions have different standard deviations for
every pixel. Thus, we cannot pre-compute filter taps and need to evaluate the Gaussian for
each sample on-the-fly while setting the standard deviation according to the CoC diameter
of the respective pixel. Please note that the Gaussian cannot be separated in our case since
the corresponding kernel is different for each pixel.



Conference Room Crytek Sponza
Ray Tracing 7.5ms 11.7ms
Feature Detection 9.8ms 6.8ms
Sharpness Field Update 0.4ms 0.5ms
Image Blur 11.8ms 10.4ms
Total 29.5ms 29.4ms

Table 1: Total per frame timing measurements for our test scenes. We also break out the separate
steps (implemented as distinct GPGPU kernels) of our pipeline.

We would like to point out that this filtering approach is an approximation of physically-
based distributed ray tracing [CPC84]. However, the approximate variant provides similar
quality while computational cost is significantly lower. In the end we are able to assemble
the final image where pixels are sharp that are in-focus in the current frame as well as
those that have been in focus before and are now being memorized.

6 Results

Our implementation runs on Windows 8 and uses NVIDIA OptiX 3.0.0 for ray tracing
which is based on CUDA 5.0. We have tested our simulation on an Intel Core i7 processor
with 2.8 GHz and an NVIDIA GTX Titan graphics card. As test scenes we used the
Conference Room (≈ 282K triangles) and the Crytek Sponza (≈ 263K triangles) where
performance measurements account for all run-time overhead except scene shadowing.

Figure 2 shows the results of our feature detection including corresponding eye movements
retrieval. We compare healthy with glaucomatous vision where the latter receives less and
locally clustered (i.e., eye movement paths are shorter) features.

Figures 3 and 4 depict the result of our simulation after specific time steps. Here within
each time step we obtain a single feature and update the sharpness field accordingly. In
addition, the scene environment is visualized under consideration of the sharpness field.
Note how sharp regions grow as more features are being integrated into the sharpness field.
We show the simulation after 1, 4, 20 and 69 time steps/features (first image sequence) and
1, 4, 20, and 82 (second sequence), respectively.

In addition, we provide performance numbers for our test scenes in Table 1 and break
out timings for different steps of our algorithm. Even when accounting for dynamic eye
movment, which requires the execution of feature detection every frame, we are able to
run our approach in real-time above 30Hz.



Figure 3: Simulation after 1, 4, 20, and 69 features, respectively. Each additional feature increases
the sharply perceived region.

7 Conclusion and Future Work

We have presented a novel approach that simulates human vision under temporal aspects.
Our algorithm facilitates the simulation of both healthy eyes and eyes with visual defects.
It runs in real-time by employing modern graphics hardware and uses NVIDIA OptiX
(based on CUDA).

In the future we would like to extend our approach by relying on eye tracker data in or-
der to resemble eye motion more accurately. That would replace our current focus point
detection as presented in Section 3. In addition, we would like to incorporate eyeglasses
and ametropic visual defects into our simulation. Therefore, we plan to determine eye lens
accommodation by using a wavefront-tracing-based algorithm; e.g., [NSG12]. In fact, the
goal towards handling multi-lens systems led us to the design choice of using ray tracing
rather than (potentially faster) rasterization for scene rendering.



Figure 4: Simulation after 1, 4, 20, and 82 features, respectively. Each additional feature increases
the sharply perceived region.
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