
High Performance Graphics (2014), pp. 1–8
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Real-Time Deformation of Subdivision Surfaces from Object
Collisions

Henry Schäfer1, Benjamin Keinert1, Matthias Nießner2, Christoph Buchenau3, Michael Guthe3, Marc Stamminger1

1University of Erlangen-Nuremberg 2Stanford University 3University of Bayreuth

Figure 1: Example scenes showing our real-time surface deformation technique. The user-controlled car (left) and the ani-
mated character (right) cause fine-scale deformations on the terrain surfaces. While deformable surfaces are represented as
displaced Catmull-Clark subdivision surfaces, we voxelize the actual surface geometry of rigid objects in order to determine
their respective deformations.

Abstract
We present a novel real-time approach for fine-scale surface deformations resulting from collisions. Deformations
are represented by a high-resolution displacement function. When two objects collide, these offsets are updated
directly on the GPU based on a dynamically generated binary voxelization of the overlap region. Consequently,
we can handle collisions with arbitrary animated geometry. Our approach runs entirely on the GPU, avoiding
costly CPU-GPU memory transfer and exploiting the GPU’s computational power. Surfaces are rendered with
the hardware tessellation unit, allowing for adaptively-rendered, high-frequency surface detail. Ultimately, our
algorithm enables fine-scale surface deformations from geometry impact with very little computational overhead,
running well below a millisecond even in complex scenes. As our results demonstrate, our approach is ideally
suited to many real-time applications such as video games and authoring tools.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

1. Introduction

In recent years, increasing attention has been devoted to dy-
namic scene environments. In real-time rendering, applying
instant fine-detail surface deformations caused by object col-
lisions is an open research problem (cf. Figure 1). The key
issue is that physics simulation and collision detection typi-
cally run on the CPU, while surface geometry for rendering
is stored on the GPU. This requires the CPU side to access
mesh data from the GPU in order to compute surface de-
formations. In addition, physics updates involve uploading
modified surface geometry back to the GPU. This results in
significant runtime overhead and affects performance on cur-

rent hardware architectures due to the bandwidth and latency
limitations of the CPU-GPU memory bus. Hence, maintain-
ing interactive frame rates is only feasible for moderately
complex meshes.

Similar problems arise in character animation. Animat-
ing the entire mesh of a character on the CPU every frame
would require costly memory transfers. Instead, the mesh is
animated using skinning. While the detailed mesh of a char-
acter is kept in GPU memory, animations are provided by a
small set of bone matrices which are updated every frame.
Mesh updates are then directly applied on the GPU without
further involving the CPU.

submitted to High Performance Graphics (2014)



2 Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions

Figure 2: Algorithm overview: deformable objects are rep-
resented as a subdivision surface with quadratic B-Spline
displacements (left). For a pair of colliding objects, a vox-
elization of the overlap region is generated (center left). Dis-
placement control points are pushed out of the rigid object
(center right), resulting in the desired deformation (right).

In this paper, we aim for a comparable procedure for local
high-frequency deformations from collisions. Therefore, we
separate out low-frequency deformations, which are com-
puted and processed by the CPU physics simulation. Fine-
detail deformations, however, are incorporated into a scalar-
valued displacement function that is exclusively stored and
updated on the GPU. This significantly reduces CPU-GPU
memory I/O, allowing for higher frame rates, and enabling
dynamic fine-scale surface deformations. To the best of our
knowledge, our fine-scale deformation algorithm is the first
that runs entirely on the GPU, and is thus orders of magni-
tude faster than all comparable CPU-based methods.

In order to represent deformable objects, we employ
Catmull-Clark subdivision surfaces [CC78], which are de-
fined by corresponding control cages called base meshes.
Our approach also supports standard triangle meshes; how-
ever, the C2 continuity of Catmull-Clark surfaces has sig-
nificant performance advantages when updating surface dis-
placements.

Base meshes, which may be skinned, are maintained by
the CPU physics, and are coarse enough to enable real-time
simulation. High-frequency surface offsets are stored in a
tile-based GPU memory format where each tile corresponds
to a subdivision surface base face. This enables storing
and processing fine-scale deformations directly on the GPU
without involving costly device-to-host memory I/O. Fur-
ther, we interpret displacements as a bi-quadratic B-Spline
scalar field that enables deriving surface normals analyti-
cally [NL13]. This allows for dynamic displacement updates
without requiring expensive normal re-computations, which
significantly differentiates us from previous approaches. In
addition, we employ dynamic GPU memory management on
the displacement tiles in order to minimize storage require-
ments [SKS13].

An overview of our algorithm is shown in Figure 2. For
simplicity, we first consider the collision of a rigid object
with a deformable one. The deformable object is represented
as a displaced subdivision surface, whereas the rigid one can
be an arbitrary subdivision surface or triangle mesh (Fig-
ure 2 left). For all pairs of objects with overlapping bounding
boxes, we voxelize the rigid object within the overlap region

using an extended variant of the real-time binary voxeliza-
tion approach by Schwarz [Sch12] (Figure 2 center left).
From the obtained voxelization, we determine the displace-
ments of deformable objects to match the shape at the colli-
sion impact (Figure 2 center right and right). In the case that
both objects are deformable, we form two collision pairs,
with each deformable acting as rigid collider for the other
deformable and only applying a fraction of the computed
deformations in the first pass.

Our approach can handle collisions with arbitrary, dy-
namic, and animated objects. Since voxelizations are com-
puted for every collision pair from scratch, the fine-scale
deformations always match the corresponding mesh geom-
etry. All of these steps are executed efficiently on the GPU,
without transferring displacement information between host
and device, resulting in an immediate response and minimal
computational overhead.

In contrast to the fine-detail collision handling, the global
physics simulation runs on the CPU, using the coarser base
mesh. The base mesh is considered to be deformable and
fully animated depending on the parameters of the physics
simulation. Modified base meshes are uploaded to the GPU
each frame in order to guarantee instant visual feedback
based on physics updates.

Note that the computed fine-scale deformations are only
used to achieve a visually richer rendering; they are not part
of the physics simulation, which is solely executed on the
CPU. We are not aiming for a complete physics simulation
on the GPU, but for visually compelling fine-scale deforma-
tion effects.

Our key contribution is a real-time technique for fine-
detail surface deformations on top of a global, potentially
low-resolution, physics simulation. We show how to com-
pute collision impacts with almost any kind of renderable
object using voxelizations of the overlap regions, and how to
update fine-scale deformations stored in displacement maps.
Our approach combines methods for fast voxelization, ef-
ficient patch culling, ray casting, and hardware tessellation
such that no costly GPU-CPU memory transfers are neces-
sary. Even in complex scenes, we achieve instant response
and visually appealing effects, as can be seen in Figure 1
and the accompanying video. Note that in all these examples
the computational overhead to apply deformations is below
a millisecond.

2. Previous Work

Real-time deformable surfaces: Deforming complex
meshes based on accurate simulation of physics is compu-
tationally very expensive [Mil07]. In order to reduce the
degrees of freedom, Galoppo et al. [GOM∗06] run their
simulation on scalar surface offsets, similar to Wrotek et
al. [WRM05] who simulate and represent deformations in

submitted to High Performance Graphics (2014)



Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions 3

bump maps. In our work, we omit accurate physics com-
putation in favor of fine-scale detail, but adopt the idea of
a dynamic deformation texture that can be accessed by the
GPU for surface updates and subsequent rendering.

More recently, an online surface deformation approach
has been proposed by Yusov [Yus12]. It makes use of the
tessellation unit (as we do), but is restricted to height-field
terrains only. Nykl et al. [NMC13] presented a method for
simulating deformations on height fields using ray casting
on box shapes. Another recent interactive sculpting and de-
formation method [SKS13] combines surface updates with
a dynamic GPU memory management strategy. However,
their surface deformations are limited to user-controlled (i.e.,
mouse input) sculpting stencils. In contrast, we incorporate
the actual surface geometry, which is dynamically deter-
mined at runtime. This makes automatic object-object in-
teraction (e.g., collision-based) feasible, and integration into
existing physics systems easy.

Surface rendering with hardware tessellation: Hardware
tessellation is ideal for rendering smooth surfaces while
providing flexible level-of-detail control. In particular, sub-
division surfaces (e.g., Catmull-Clark [CC78]) have been
proven to be well suited to this platform [NLMD12, Nie13,
SNK∗14]. In order to incorporate high-frequency surface
detail, displacements can be used [SKU08, TBB10]. When
rendering displacements, great care must be taken to avoid
cracks at patch boundaries and texture seams. Therefore,
Burley and Lacewell [BL08] propose Ptex, an offline ap-
proach that stores adjacency pointers to enforce consistency.
Mesh colors [YKH10] index all texture data and provide
consistent texture access. Schäfer et al. [SPM∗12] use a sim-
ilar idea to generate a multi-resolution scene representation
that is efficiently rendered using hardware tessellation. A
Ptex-like GPU variant for (dynamic) displacement mapping
has been proposed by Nießner and Loop [NL13]. The ap-
proach is based on subdivision surfaces and provides ana-
lytic surface normals for rendering. Our surface representa-
tion is based on this approach since it enables dynamic sur-
face updates without expensive normal re-computation. In
addition, we employ a dynamic GPU memory management
strategy [SKS13, SKNS14] on the face textures to minimize
the memory footprint for surface offsets storage.

Real-time voxelization: In order to identify fine-scale sur-
face collisions, we voxelize object parts in overlapping re-
gions which are given by the intersections of respective ob-
ject bounding boxes. There are various real-time techniques
for generating a suitable real-time voxelization on modern
GPUs [DCB∗04, ED06, ED08, SS10]. Our algorithm relies
on a practical solid binary voxelization [Sch12], which can
be efficiently determined in a single pass on the GPU. In
order to identify potential deforming patch candidates in
the overlapping region of two object bounding boxes, we
cull patches against the region based on their spatial ex-
tent. In addition, we need to account for potential displace-

ments by bounding the Catmull-Clark patch normals. For
instance, this can be achieved by calculating the cone of
normals as proposed by Shirmun and Abi-Ezzi [SAE93].
While this provides for accurate patch normal bounds, it is
computationally expensive. Therefore, we approximate the
cone of normals [SM88] similar to Munkberg et al. [MH-
TAM10] and Nießner et al. [NL12]. This is significantly
faster than the accurate variant and provides similar quality
bounds. Patches can be also culled by computing the para-
metric tangent plane [LNE11], i.e., determining whether a
patch is front or back-facing. However, this is unsuitable for
our needs, since this approach only applies to non-displaced
surfaces.

3. Deformable Surface Representation

Our system stores fine-scale deformations as displacements
applied to a coarse base mesh. To achieve high-quality
displacements, a high resolution of the displacement val-
ues and smooth interpolation are necessary, both within
patches and over patch boundaries. We thus use Catmull-
Clark [CC78] subdivision surfaces, which provide smooth,
high-quality surface detail. These surfaces can be rendered
efficiently using the GPU hardware tessellation unit intro-
duced with DX11 [Mic09]. More specifically, we render the
true Catmull-Clark limit surface by employing feature adap-
tive subdivision [NLMD12]. We interpret displacements as
control points of an analytic displacement function [NL13].
This is a scalar-valued, bi-quadratic B-Spline with (dual)
Doo-Sabin [Doo78] connectivity and special treatment at ex-
traordinary vertices. In principle, we could use any displace-
ment mapping approach such as [SKU08, SPM∗12]. The
reason for our design choice is that analytic displacements
(which are C1 everywhere) provide continuous normals that
can be evaluated on-the-fly. This allows for efficient dis-
placement updates without costly normal re-computations
(cf. Section 6). It also facilitates faster rendering than tra-
ditional displacement variants with normal maps.

The original analytic displacement mapping approach
suggests storing the scalar-valued B-Spline coefficients in a
tile-based texture format. That is, every patch of the Catmull-
Clark base mesh corresponds to a rectangular tile domain
with a fixed set of texels. In addition, every tile contains a
one-texel overlap to enable evaluation and filtering at tile
boundaries. We also pre-compute edge and corner overlap
adjacency pointers, which are later used to enforce global
displacement consistency after texture updates (see Sec-
tion 6). To keep memory requirements low, we only allo-
cate memory for patches that have been deformed, using a
dynamic GPU memory management scheme [SKS13]. Note
that analytic displacements efficiently handle lookup at ver-
tices with irregular connectivity, thus enforcing data consis-
tency (for details see [NL13]).

submitted to High Performance Graphics (2014)



4 Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions

4. Physics Simulation

For the physics simulation, we employ the bullet physics li-
brary [C∗06] which runs on the CPU. We use the control
cage (or a modified triangular approximation) of the base
surface as a physics representation. This handles the physics
interactions between objects including collision detection
and response, as well as rigid and possibly non-rigid sur-
face deformations at the base surface level. Resulting kine-
matic updates are then sent to the GPU where the base mesh
control points are updated by a compute kernel. While this
runs efficiently in real-time, it lacks high-frequency defor-
mation features due to the relatively low-detail base mesh
representation. Thus, we additionally modify displacement
offsets directly on the GPU to generate fine-scale surface de-
formations from collisions, as described in the next section.

These fine-scale surface deformations are only computed
to generate visually convincing results, but are not part of
the physics simulation. Thus, surface deformations do not
generate friction and are not volume-preserving.

5. Deformation Detection

In order to determine fine-scale deformations, we compute
overlap regions from bounding volumes of colliding scene
objects. Geometry inside an overlap region is voxelized, and
the resulting voxelization is later used to compute the defor-
mation.

Overlap Regions We compute oriented bounding boxes
(OBBs) for all scene objects using a principal component
analysis (PCA) on all control points of the Catmull-Clark
subdivision surface, which hold convex hull property. In ad-
dition, we incorporate a safety margin based on the maxi-
mum displacement extent. For rigid meshes or keyframe an-
imations, we can pre-compute OBBs, whereas for animated
meshes, e.g., skinning animations, we use a parallel reduc-
tion on the GPU [H∗07] to determine OBB bounds. Once a
collision has been detected, we intersect the bounding vol-
umes of the collision pair to obtain a new OBB (intersecting
volume) that conservatively bounds the overlapping region.

Culling Geometry within Overlap The overlap region is
usually much smaller than the object’s OBB, so we can gain
significant performance by sorting out geometry outside this
region. The following conservative culling approach runs en-
tirely on the GPU: First, we compute axis-aligned bounding
boxes (AABBs) for every patch in the space spanned by the
intersecting volume. Since we use feature adaptive subdi-
vision [NLMD12] for rendering, we obtain a nested set of
bi-cubic B-Spline patches of the Catmull-Clark surface. In
order to obtain tight patch bounds, we convert all B-Spline
patches into Bézier basis and make use of the convex hull
property. Note that this conversion is applied directly in the
GPU culling kernel without the need for additional storage
or memory I/O. Second, we incorporate displacement offsets

Figure 3: Our approach first determines the intersecting vol-
ume between the oriented bounding boxes of the animated
object (left) and the deformable object (i.e., the terrain be-
low). Second, we voxelize patches within that intersection
(right) in order to compute corresponding surface defor-
mations. Note that per patch culling efficiently reduces the
amount of patches that need to be voxelized and deformed.

(if present) by computing a cone of normals following Seder-
berg and Meyers [SM88]. This approximate cone of normals
variant has been proven to be computationally very efficient
[MHTAM10, NL12, NSSL13] and provides similar quality
to the accurate variant by Shirmun and Abi-Ezzi [SAE93].
Note that patches on all subdivision levels obtained by adap-
tive subdivision (cf. Section 3) are cull-tested against the in-
tersecting volume. The cull decision of non-culled patches is
propagated to faces of the base mesh. In order to reduce work
on subsequent pipeline stages, we run a parallel compaction
on the cull decision buffer. For patches of deformable ob-
jects, we use the obtained compacted culling information to
reduce deformation update costs (see Section 6). For rigid
objects, we only consider non-culled patches for the binary
voxelization (see below).

Voxelization of Overlap For non-zero intersecting OBBs,
we compute the binary voxelization of the corresponding
rigid object following the approach of Schwarz [Sch12]. The
voxel space is thereby defined by the base vectors of the in-
tersecting volume. By using the previously determined com-
pacted culling information, we can safely omit patches out-
side that volume to speed up computations (compare Fig-
ure 2 center left). However, clipping objects against inter-
secting volumes results in non-closed surfaces that cannot
be handled by the original approach. In order to obtain a
correct voxelization, we adopt the modifications proposed
by Nießner et al. [NSSL13], i.e., we use forward-backward
voxelization direction distinction and AABB extension. An
example of a binary voxelization for a given intersecting vol-
ume is shown in Figure 3.

While we allocate a single voxelization buffer (shared by
all objects) of a fixed size, we anisotropically scale the voxel
grid with respect to the extent of a particular intersecting
volume. In our examples, we use a budget of 224 voxels,
thus requiring about 2MB of GPU memory.

submitted to High Performance Graphics (2014)



Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions 5

regular overlap update kernels equalize extraordinary kernel

Figure 4: Overlap update (from left): For regular patches, edge and corner data needs to be copied to adjacent patches. First,
a GPU kernel copies edge data. Second, another GPU kernel copies corner data. Note that no diagonal adjacency pointers
are required. Irregular patch configurations are similar, but require an additional processing step. We enforce displacement
consistency at extraordinary vertices by incorporating all adjacent corner values. Therefore, we equalize all four neighboring
texels of each patch (cf. right, gray colored) according to the average of the original corner values (second from right).

Figure 5: The voxelization may cause discretization arti-
facts in the displaced surface as shown in the normal map vi-
sualization (left). Jittering the orientation of the intersected
volume used for voxelization allows for a much better ap-
proximation of the true surface (right).

6. Surface Deformation

In the previous step, we generated the voxelization of rigid
objects for all non-zero intersecting volumes. Now, all
patches of the deformable surface within the intersection
volume are to be displaced such that they no longer inter-
sect with the (voxelization of the) rigid object. Therefore,
we look at all control points of the displacement B-Spline
(of non-culled patches) and compute their corresponding
world space positions. More precisely, these are Catmull-
Clark surface points, evaluated at the knot points of the dis-
placement B-Spline, with applied displacement (cf. Figure 2
center left). If such a control point lies within the deform-
ing object, we move it in the negative base surface normal
direction (we only have scalar displacements) until it leaves
the deforming object (red control points in Figure 2). To this
end, we cast a ray that originates at the control point’s corre-
sponding world space position and pointing along the nega-
tive base surface normal. Since this step involves evaluating
the Catmull-Clark surface, we make use of the regular B-
Spline patches obtained by adaptive subdivision. In addition,
if there already exist patch displacements, we account for the
previous surface offset. We now traverse the rays through the
binary voxelization using a three-dimensional digital differ-
ential analyzer (DDA) [AW∗87]. If the ray leaves the vox-
elization in the first traversal step, we assume that we started
at the boundary and perform no displacement update at all.
Otherwise, the negative traveled distance is added to the cur-
rent displacement, such that the new control point is outside

of the voxelization, and thus outside of the deforming ob-
ject. Control points outside of the voxelization (yellow one
in Figure 2) and outside of the overlap region (red ones) are
left unchanged.

Note that we do not fit the displaced surface. Instead, we
directly constrain the scalar-valued control points. Hence,
the bi-quadratic B-Spline function is approximated rather
than interpolated. This avoids typical ringing artifacts caused
by B-Spline interpolation, and results in more realistic dis-
placements. The small remaining overlap is hardly visually
noticeable, but the boundaries look much more convincing
and the computation is much simpler. One could also ap-
ply further smoothing on displacements in order to reflect
the underlying material properties. This is trivial since patch
tiles store a one texel overlap [NL13].

Our system relies on the voxelized approximation of an
object instead of the true surface when computing displace-
ment offsets. This approximation may cause discretization
artifacts as shown in Figure 5 (left). In order to avoid these
artifacts, we randomly jitter the direction which is used to
generate the voxelization. That is, in every frame, we slightly
rotate the intersecting volume. Note that we conservatively
bound the rotated volume such that the original volume is
fully contained. As a result, we obtain a better approxima-
tion of the true surface as shown in Figure 5 (right).

Once surface deformations are computed, we need to up-
date tile overlap in order to enforce displacement data con-
sistency (e.g., for rendering). Therefore, we employ pre-
computed edge and corner adjacency tables (cf. Section 3)
in a set of GPU compute kernels. That is, we need to copy
edge and corner data to neighboring tiles (Figure 4). Instead
of storing adjacency information to diagonal patches, cor-
ners are updated by two consecutive kernels using only di-
rect neighbor adjacency. Note that we only propagate dis-
placement information originating from updated tile textures
using the compacted cull-decision buffer, which greatly re-
duces runtime overhead. After updating edge and corner
overlap, we provide consistent surface evaluation at extraor-
dinary vertices by equalizing corner displacements in an ex-
tra kernel that is executed for all extraordinary vertices (see
Figure 4 right).

submitted to High Performance Graphics (2014)



6 Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions

Figure 6: Our technique applied to a driving car on snowy terrain. Collisions from the car wheels cause surface deformations
on the terrain. Deformations are determined based on the voxelization of deforming objects. In contrast to standard decal or
bump mapping approaches, we modify the actual surface geometry, as shown in the wireframe rendering (right).

7. Results

We implemented our approach using DirectX 11 with all
shaders written in HLSL running on an NVIDIA GTX 780.
While we use the standard graphics pipeline for visualiza-
tion (i.e., rendering with hardware tessellation) and voxeliza-
tion, we employ compute shaders for culling, compaction,
ray casting the voxelization (DDA), and for updating the
displacement tile overlap. For the physics simulation we em-
ploy the bullet library [C∗06]. In the following, we provide a
comparison of visual quality with a set of test scenes and per-
formance measurements in milliseconds. Unless otherwise
mentioned, we use a tile size of 128×128 in our examples.

Example Scenes The first example scene, shown in Figure 1
(left), is a snowy, deformable terrain with static geometry
such as houses and trees. In addition, the scene also includes
dynamic objects, such as a car and barrels, which are sim-
ulated using the bullet physics engine [C∗06]. Overall, the
scene contains about 150k triangles (non-deformable) and
8800 patches for the deformable terrain. Our approach al-

Figure 7: Example of high-frequency deformation on sur-
face: the rolling high-detail spike ball leaves a geometric
trail on the traversed surface.

lows for fine-scale deformations solely based on the geo-
metric representation and physical behavior of the car. As a
result, the car wheels leave tracks in the snow field, incor-
porating both geometric and surface normal deformations.
Compared to standard decal rendering or bump mapping,
our approach updates the actual surface geometry. Figure 6
shows a close-up of the car model on the snow field where
the deformations can be seen in the wireframe rendering. In
Figure 7, we also show an example with fine-scale surface
detail, where the Spikeball causes deformations at all contact
points with the snow field. In the same scene, a skinning an-
imation character is used to deform the surface, as shown in
Figure 1 (right). Again, we refer to the accompanying video
for the full sequence.

The second scene (see Figure 9) shows the Monsterfrog
model sculpted using different geometric tools. The frog
model consists of 1292 base mesh patches which corre-
sponds to 41274 render patches at feature adaptive subdi-
vision level six.

Performance Measurements A performance overview for
our test scenes (see above) is provided in Table 1. We mea-
sure performance for different patch tile sizes (displacement
map resolution), break out timings for different pipeline
stages of our algorithm, and summarize the resulting over-
head to apply deformations per colliding object. Note that
each pipeline stage corresponds to a particular draw call or
GPU compute kernel.

We provide timings for patch culling, compaction and ob-
ject voxelization, which need to be determined for each non-
zero intersecting volume (i.e., each collision pair). Finally,
we show timings for calculating the depth penetration of
the voxel volume into deformable objects via ray casting,
as well as measurements for the overlap updates of the dis-
placement tiles once surface deformations have been com-
puted. The measurements in Table 1 show that the choice
of the per-patch tile size has a direct impact on ray casting
time. While more displacement control points must be con-

submitted to High Performance Graphics (2014)



Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions 7

Scene Terrain Frog

base patches 8769 1292
render patches 12679 41274
draw subD 0.563 0.374

tile size 322 1282 1282 1282 322 1282 1282 1282

no culling no compaction no culling no compaction

culling 0.164 0.164 - 0.164 0.368 0.368 - 0.368
compaction 0.005 0.005 - - 0.004 0.004 - -
voxelization 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
ray casting 0.053 0.073 10.11 0.073 0.083 0.114 45.87 0.114
overlap 0.025 0.025 0.228 0.228 0.025 0.028 0.178 0.178

sum overhead 0.254 0.273 10.31 0.471 0.486 0.521 46.054 0.666

Table 1: Performance measurements on test scenes for different per-patch tile resolutions in milliseconds. For each colliding
object pair the deformable culled against the overlapping region followed by stream compacting the cull decision results. Then
the colliding rigid object is voxelized. Then rays are cast from the deformable object into the voxel volume to determine the
penetration depth and stored as displacement. Finally, the boundaries of the tile storage scheme are updated.

sidered for a higher tile resolution during deformation com-
putation, the increase of time is less than expected. We at-
tribute this to the low GPU occupancy since only a few tiles
are affected, leaving us with the option to further increase the
tile resolution. The most expensive step of our deformation
pipeline is patch culling, since all patches need to be pro-
cessed for cull testing. Without culling and a 128× 128 tile
size, ray casting takes 10.11 ms and 45.87 ms for the terrain
and frog scene, respectively. That is several orders of mag-
nitudes slower than the default setting with culling enabled.
Thus, culling is easily paying off the additional computa-
tional overhead.

Updating displacement tile overlap has only marginal im-
pact, as only actual deformed patches need to propagate tile
boundary texels to the neighbors. Without stream compact-
ing the culling buffer, overlap computation takes 0.228 ms
and 0.178 ms for the terrain and monsterfrog scene, respec-
tively. Thus, the additional overhead of the compaction step
is also easily amortized.

Overall, the overhead of our deformation approach is well
below a millisecond for our test scenes (with our standard
tile size of 128×128) which makes it ideal for real-time ap-

Figure 8: Comparison of resulting deformation using a
16x16 (left) and 128x128 (right) per patch tile resolutions.

plications. We also never encountered any performance fluc-
tuations since timings were constant up to ±2%. In Figure 8,
we show a comparison of the resulting deformation quality
using different tile resolutions for the trail of a car wheel
on the terrain. We require less memory than traditional dis-
placement mapping approaches since no normal map is re-
quired (16 bit float values per displacement value are suf-
ficient). Memory overhead for adjacency pointers and vox-
elization buffers is negligible (cf. Section 5).

Sculpting Demo Our method supports the deformation of
subdivision surfaces with existing displacement as shown
with the Monsterfrog. As an example, we show a demo
where we use meshes as a deformation tools to modify a
given surface; see Figure 9. The tools consist of triangle and
subdivision surface meshes.

Figure 9: Deformation on a subdivision surface with exist-
ing displacements using a pen-device-controlled sculpting
geometry. For constraining the penetration depth, the pres-
sure of the pen device is used to apply forces to the tool con-
trolled by the physics engine.

submitted to High Performance Graphics (2014)



8 Schäfer et al. / Real-Time Deformation of Subdivision Surfaces from Object Collisions

8. Conclusion

In this paper, we presented a system for the real-time com-
putation of deformations on subdivision surfaces from colli-
sions with dynamic and possibly animated meshes. We show
how deformations, represented as displacements, can be up-
dated on-the-fly very efficiently using a novel tool chain run-
ning completely on the GPU, without costly memory trans-
fer. With our approach, we achieve deformations even in
complex scenes well below render time, so we believe it is
well suited for many interactive applications such as video
games or authoring tools.

However, it must be emphasized that the generated defor-
mations are only aiming at a more detailed and dynamic vi-
sual appearance, but cannot be considered as a physics sim-
ulation. We also do not consider elasticity, volume preserva-
tion, friction or topological changes. We believe that these
current limitations make for interesting future directions.

Acknowledgements

This work is co-funded by the German Research Foundation
(DFG), grant GRK-1773 Heterogeneous Image Systems.

References
[AW∗87] AMANATIDES J., WOO A., ET AL.: A fast voxel traver-

sal algorithm for ray tracing. In Proc. EG’87 (1987), vol. 87,
pp. 3–10. 5

[BL08] BURLEY B., LACEWELL D.: Ptex: Per-Face Texture
Mapping for Production Rendering. CGF 27, 4 (2008), 1155–
1164. 3

[C∗06] COUMANS E., ET AL.: Bullet physics library. Open
source: bulletphysics.org (2006). 4, 6

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided De-
sign 10, 6 (1978), 350–355. 2, 3

[DCB∗04] DONG Z., CHEN W., BAO H., ZHANG H., PENG Q.:
Real-time voxelization for complex polygonal models. In Com-
puter Graphics and Applications (2004). 3

[Doo78] DOO D.: A Subdivision Algorithm for Smoothing Down
Irregularly Shaped Polyhedrons. In Proceedings on Interactive
Techniques in Computer Aided Design (1978), IEEE, pp. 157–
165. 3

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization
and applications. In Proc. I3D’06 (2006). 3

[ED08] EISEMANN E., DÉCORET: Single-pass GPU solid vox-
elization for real-time applications. In Proc. Graphics Interface
’08 (2008). 3

[GOM∗06] GALOPPO N., OTADUY M. A., MECKLENBURG P.,
GROSS M., LIN M. C.: Fast simulation of deformable models in
contact using dynamic deformation textures. In Proc. Computer
Animation ’06 (2006), pp. 73–82. 2

[H∗07] HARRIS M., ET AL.: Optimizing parallel reduction in
CUDA. NVIDIA Developer Technology 2 (2007). 4

[LNE11] LOOP C., NIESSNER M., EISENACHER C.: Effective
back-patch culling for hardware tessellation. In Proc. VMV’11
(2011). 3

[MHTAM10] MUNKBERG J., HASSELGREN J., TOTH R.,
AKENINE-MÖLLER T.: Efficient bounding of displaced bézier
patches. In Proc. HPG’10 (2010). 3, 4

[Mic09] MICROSOFT CORPORATION: Direct3D
11 Features, 2009. http://msdn.microsoft.com/en-
us/library/ff476342(VS.85).aspx. 3

[Mil07] MILLINGTON I.: Game physics engine development,
2007. 2

[Nie13] NIESSNER M.: Rendering Subdivision Surfaces using
Hardware Tessellation. Dissertation. Dr. Hut, 2013. 3

[NL12] NIESSNER M., LOOP C.: Patch-based occlusion culling
for hardware tessellation. In Proc. CGI’12 (2012), vol. 2. 3, 4

[NL13] NIESSNER M., LOOP C.: Analytic Displacement Map-
ping using Hardware Tessellation. ACM Transactions on Graph-
ics (2013). 2, 3, 5

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.:
Feature Adaptive GPU Rendering of Catmull-Clark Subdivision
Surfaces. ACM Transactions on Graphics (2012). 3, 4

[NMC13] NYKL S., MOURNING C., CHELBERG D.: Interactive
Mesostructures. In Proc. I3D’13 (2013), pp. 37–44. 3

[NSSL13] NIESSNER M., SIEGL C., SCHÄFER H., LOOP C.:
Real-time Collision Detection for Dynamic Hardware Tessellated
Objects. In EG short papers (2013), Eurographics. 4

[SAE93] SHIRMUN L., ABI-EZZI S.: The cone of normals tech-
nique for fast processing of curved patches. CGF 12, 3 (1993).
3, 4

[Sch12] SCHWARZ M.: Practical binary surface and solid vox-
elization with Direct3D 11. In GPU Pro 3. A K Peters/CRC
Press, 2012. 2, 3, 4

[SKNS14] SCHÄFER H., KEINERT B., NIESSNER M., STAM-
MINGER M.: Local Painting and Deformation of Meshes on the
GPU. CGF (2014). 3

[SKS13] SCHÄFER H., KEINERT B., STAMMINGER M.: Real-
time Local Displacement using Dynamic GPU Memory Manage-
ment. In Proc. HPG’13 (2013), ACM. 2, 3

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Displacement
Mapping on the GPU-State of the Art. CGF 27, 6 (2008), 1567–
1592. 3

[SM88] SEDERBERG T., MEYERS R.: Loop detection in sur-
face patch intersections. Computer Aided Geometric Design 5,
2 (1988). 3, 4

[SNK∗14] SCHÄFER H., NIESSNER M., KEINERT B., STAM-
MINGER M., LOOP C.: State of the Art Report on Real-time
Rendering with Hardware Tessellation. In Proceedings of EG’14
(2014), Eurographics Association. 3

[SPM∗12] SCHÄFER H., PRUS M., MEYER Q., SÜSSMUTH J.,
STAMMINGER M.: Multiresolution attributes for tessellated
meshes. In Proc I3D’12 (2012), ACM, pp. 175–182. 3

[SS10] SCHWARZ M., SEIDEL H.: Fast parallel surface and solid
voxelization on gpus. Transactions on Graphics 29, 6 (2010). 3

[TBB10] TATARCHUK N., BARCZAK J., BILODEAU B.: Pro-
gramming for Real-Time Tessellation on GPU. AMD whitepaper,
5 (2010). 3

[WRM05] WROTEK P., RICE A., MCGUIRE M.: Real-time col-
lision deformations using graphics hardware. Journal of Graph-
ics, GPU, and Game Tools 10, 4 (2005), 1–22. 2

[YKH10] YUKSEL C., KEYSER J., HOUSE D. H.: Mesh colors.
ACM Transactions on Graphics 29, 2 (2010), 15. 3

[Yus12] YUSOV E.: Real-Time Deformable Terrain Rendering
with DirectX 11. Gpu Pro 3: Advanced Rendering Techniques 3
(2012), 2. 3

submitted to High Performance Graphics (2014)


