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Figure 1: Our novelHeadOn approach enables real-time reenactment of upper bodymotion, head pose, face expression, and eye
gaze in human portrait videos. For synthesis of new photo-realistic video content, we employ a novel video-based rendering
approach that builds on top of a fully controllable 3D actor model. The person-specific model is constructed from a short
RGB-D calibration sequence and is driven by a real-time torso and face tracker.

ABSTRACT
We propose HeadOn, the first real-time source-to-target reenact-

ment approach for complete human portrait videos that enables

transfer of torso and head motion, face expression, and eye gaze.

Given a short RGB-D video of the target actor, we automatically

construct a personalized geometry proxy that embeds a parametric

head, eye, and kinematic torso model. A novel real-time reenact-

ment algorithm employs this proxy to photo-realistically map the

captured motion from the source actor to the target actor. On top

of the coarse geometric proxy, we propose a video-based rendering

technique that composites the modified target portrait video via

view- and pose-dependent texturing, and creates photo-realistic

imagery of the target actor under novel torso and head poses, facial

expressions, and gaze directions. To this end, we propose a robust

tracking of the face and torso of the source actor. We extensively

evaluate our approach and show significant improvements in en-

abling much greater flexibility in creating realistic reenacted output

videos.
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1 INTRODUCTION
Reenactment approaches aim to transfer the motion of a source

actor to an image or video of a target actor. Very recently, facial

reenactment methods have been successfully employed to achieve

highly-realistic manipulations of facial expressions based on com-

modity video data [Averbuch-Elor et al. 2017; Suwajanakorn et al.

2017; Thies et al. 2015, 2016, 2018; Vlasic et al. 2005]. Rather than

animating a virtual, stylized avatar (e.g., as used in video games),

these algorithms replace the face region of a person with a synthetic

re-rendering, or modify the target image/video under guidance of

a 3D face model. This enables changing the expression of a target

person and creating a manipulated output video that suggests dif-

ferent content; e.g., a person who is sitting still could appear as if

he/she is talking. Modern reenactment approaches achieve highly

believable results, even in real-time, and have enjoyed wide media

coverage due to the interest in general movie and video editing

[Vlasic et al. 2005], teleconferencing [Thies et al. 2018], reactive

profile pictures [Averbuch-Elor et al. 2017], or visual dubbing of

foreign language movies [Garrido et al. 2015].

Even though current facial reenactment results are impressive,

they are still fundamentally limited in the type of manipulations

they enable. For instance, these approaches are only able to modify

facial expressions, whereas the rigid pose of the head, including

its orientation, remains unchanged and does not follow the input

video. Thus, only subtle changes, such as opening the mouth or

adding wrinkles on the forehead are realized, which severely limits

the applicability to video editing, where the control of the pose

of the target person is also required. Furthermore, without joint

modification of the head pose, the modified facial expressions often

seem out-of-place, since they do not well align with visual pauses in

the body and head motion; as noted by Suwajanakorn et al. [2017]

this significantly restricts the applicability in teleconferencing sce-

narios.



In this work, we thus go one step further by introducing HeadOn,
a reenactment system for portrait videos recorded with a commod-

ity RGB-D camera. We overcome the limitations of current facial

reenactment methods by not only controlling changes in facial

expression, but also reenacting the rigid position of the head, of

the upper body, and the eye gaze – i.e., the entire person-related

content in a portrait video.

At the core of our approach is the combination of robust and

accurate tracking of a deformation proxy with view-dependent

texturing for video-based re-rendering. To achieve this, we propose

a new method to swiftly and automatically construct a personalized

head and torso geometry proxy of a human from a brief RGB-D

initialization sequence. The shape proxy features a personalized

parametric 3D model of the complete head that is rigged with blend-

shapes for expression control and is integrated with a personalized

upper torso model. A new real-time reenactment algorithm em-

ploys this proxy to photo-realistically map face expression and eye

gaze, as well as head and torso motion of a captured source actor

to a target actor. To this end, we contribute a new photo-realistic

video-based rendering approach that composites the reenacted tar-

get portrait video via view- and pose-dependent texturing and video

compositing.

In summary, we contribute the following:

• rapid automatic construction of a personalized geometry

proxy that embeds a parametric human face, eye, full head,

and upper body model,

• a photo-realistic, view-, and pose-dependent texturing and

compositing approach,

• a robust tracking approach of the source actor,

• and real-time source-to-target reenactment of complete hu-

man portrait videos.

2 RELATEDWORK
Face reconstruction and reenactment have a long history in com-

puter graphics and vision. We focus on recent approaches based on

lightweight commodity sensors. For an overview of high-quality

techniques that use controlled acquisition setups, we refer to Klehm

et al. [2015]. Recently, a state-of-the-art report on monocular 3d

face reconstruction, tracking and applications has been published

that gives a comprehensive overview of current methods [Zollhöfer

et al. 2018]. In the following we concentrate on the most related

techniques.

Parametric Face Representations. Current state-of-the-art monoc-

ular face tracking and reconstruction approaches heavily rely on

3D parametric identity [Blanz et al. 2003; Blanz and Vetter 1999]

and expression models [Tena et al. 2011] that generalize active ap-

pearance models [Cootes et al. 2001] from 2D to 3D space. Even

combinations of the two have been proposed [Xiao et al. 2004]. Re-

cently, large-scale models in terms of geometry [Booth et al. 2016]

and texture [Zafeiriou et al. 2017] have been constructed based

on an immense amount of training data (10,000 scans). For mod-

eling facial expressions, the de facto standard in the industry are

blendshapes [Lewis et al. 2014; Pighin et al. 1998]. Physics-based

models [Ichim et al. 2017; Sifakis et al. 2005] have been proposed in

research, but fitting such complex models to commodity video at

real-time rates is still challenging. Some approaches [Shi et al. 2014a;

Vlasic et al. 2005] jointly represent face identity and expression in a

single multi-linear model. Joint shape and motion models [Li et al.

2017] have also been learned from a large collection of 4D scan data.

Other approaches [Garrido et al. 2016] reconstruct personalized

face rigs, including reflectance and fine-scale detail from monocular

video. Liang et al. [Liang et al. 2014] reconstruct the identity of

a face from monocular Kinect data using a part-based matching

algorithm. They select face parts (eyes,nose,mouth,cheeks) from a

database of faces that best match the input data. To get an improved

and personalized output they fuse these parts with the Kinect depth

data. Ichim et al. [2015] propose to reconstruct 3D avatars from

multi-view images recorded by a mobile phone and personalize the

expression space using a calibration sequence.

Commodity Face Reconstruction and Tracking. The first commod-

ity face reconstruction approaches that employed lightweight cap-

ture setups, i.e., stereo [Valgaerts et al. 2012], RGB [Fyffe et al. 2014;

Garrido et al. 2013; Shi et al. 2014a; Suwajanakorn et al. 2014, 2015],

or RGB-D [Chen et al. 2013] cameras had slow off-line frame rates

and required up to several minutes to process a single input frame.

These methods either deform a personalized template mesh [Suwa-

janakorn et al. 2014, 2015; Valgaerts et al. 2012], use a 3D template

and expression blendshapes [Fyffe et al. 2014; Garrido et al. 2013], a

template and an underlying generic deformation graph [Chen et al.

2013], or additionally solve for the parameters of a multi-linear

face model [Shi et al. 2014a]. Suwajanakorn et al. [2014; 2015] build

a modifiable mesh model from internet photo collections. Shi et

al. [2014b] key-frame based bundle adjustment to fit themulti-linear

model. Recently, first methods have appeared that reconstruct fa-

cial performances in real-time from a single commodity RGB-D

camera [Bouaziz et al. 2013; Hsieh et al. 2015; Li et al. 2013; Thies

et al. 2015; Weise et al. 2011; Zollhöfer et al. 2014]. Dense real-time

face reconstruction has also been demonstrated based on monoc-

ular RGB data using trained regressors [Cao et al. 2014a, 2013] or

analysis-by-synthesis [Thies et al. 2016]. Even fine-scale detail can

be recovered at real-time frame rates [Cao et al. 2015].

Performance Driven Facial Animation. Face tracking has been ap-

plied to control virtual avatars in many contexts. First approaches

were based on sparse detected feature points [Chai et al. 2003;

Chuang and Bregler 2002]. Current methods for character anima-

tion [Cao et al. 2015, 2014a, 2013; Weise et al. 2009], teleconferences

[Weise et al. 2011], games [Ichim et al. 2015], and virtual reality

[Li et al. 2015; Olszewski et al. 2016] are based on dense alignment

energies. Olszewski et al. [2016] proposed an approach to control a

digital avatar in real-time based on an HMD-mounted RGB cam-

era. Recently, Hu et al. [2017] reconstructed a stylized 3D avatar,

including hair, from a single image that can be animated and dis-

played in virtual environments. General image-based modeling and

rendering techniques [Gortler et al. 1996; Isaksen et al. 2000; Kang

et al. 2006; Kopf et al. 2013; Wood et al. 2000] enable the creation of

photo-realistic imagery for many real-world effects that are hard to

render and reconstruct at a sufficiently high quality using current

approaches. In the context of portrait videos, especially fine details,

e.g., single strands of hair or high-quality apparel, are hard to re-

construct. Cao et al. [2016] drive dynamic image-based 3D avatars

based on a real-time face tracker. We go one step further and com-

bine a controllable geometric actor rig with video-based rendering
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techniques to enable the real-time animation and synthesis of a

photo-realistic portrait video of a target actor.

Face Reenactment and Replacement. Face reconstruction and

tracking enabling the manipulation of faces in videos has already

found its way into consumer applications, e.g., Snapchat, Face

Changer, and FaceSwap. Face replacement approaches [Dale et al.

2011; Garrido et al. 2014] swap out the facial region of a target actor

and replace it with the face of a source actor. Face replacement is also

possible in portrait photos crawled from the web [Kemelmacher-

Shlizerman 2016]. In contrast, facial reenactment approaches pre-

serve the identity of the target actor and modify only the facial

expressions. The first approaches worked offline [Vlasic et al. 2005]

and required controlled recording setups. Thies et al. [2015] pro-

posed the first real-time expression mapping approach based on an

RGB-D camera. Follow-up works enabled real-time reenactment of

monocular videos [Thies et al. 2016] and stereo video content [Thies

et al. 2017, 2018]. Visual video dubbing approaches try to match the

mouth motion to a dubbed audio-track [Garrido et al. 2015]. For

mouth interior synthesis, image-based [Kawai et al. 2014; Thies et al.

2016] and template-based [Thies et al. 2015] approaches have been

proposed. Recently, Suwajanakorn et al. [2017] presented an im-

pressive system mapping audio input to plausible lip motion using

a learning-based approach. Even though all of these approaches ob-

tain impressive results, they are fundamentally limited in the types

of enabled manipulations. For instance, the rigid pose of the upper

body and head cannot be modified. One exception is the offline

approach of Elor et al. [Averbuch-Elor et al. 2017] that enables the

creation of reactive profile videos while allowing mapping of small

head motions based on image warping. Our approach goes one step

further by enabling complete reenactment of portrait videos, i.e.,

it enables larger changes of the head pose, control over the torso,

facial reenactment and eye gaze redirection, all at real-time frame

rates, which is of paramount importance for live teleconferencing

scenarios.

Recently, Ma et al. [Ma et al. 2017] proposed a generative frame-

work that allows to synthesize images of people in novel body poses.

They employ a U-Net-like generator that is able to synthesize im-

ages at a resolution of 256 × 256 pixels. While showing nice results,

they only work on single images and not videos; they are not able

to modify facial expressions.

3 METHOD OVERVIEW
Our approach is a synergy between many tailored components. In

this section we give an overview of our approach; before explaining

all components in the following sections. Fig. 2 depicts the pipeline

of the proposed technique. We distinguish between the source actor

and the target actor that has to be reenacted using the expressions

and motions of the source actor. The source actor is tracked in

real time using a dense face tracker and a model-to-frame Iterative

Closest Point (ICP) method to track the torso of the person (details

are given in Sec. 6.1). To be able to transfer the expressions and

the rigid motion of the head as well as the torso to the target

actor, we construct a video-based actor rig (see Sec. 4). This actor

rig is based on the combination of the SMPL body model [Loper

et al. 2015] and a parametric face model that is also used to track

the facial expressions of the source actor. Our novel video-based

Figure 2: Overview of our proposed HeadOn technique.
Based on the tracking of the torso and the face of the source
actor, we deform the target actor mesh. Using this deformed
proxy of the target actor’s body, we use our novel view-
dependent texturing to generate a photo-realistic output.

rendering technique (Sec. 5) allows us to render the target actor rig

in a photo-realistic fashion. Since the face model used to rig the

target actor is the same as the model used to track the source actor,

we can directly copy the expression parameters from the source

model to the target rig. To transfer the body pose, we compute

the relative pose between the tracked face and the torso. Using

inverse kinematic we map the pose to the three involved joints of

the SMPL skeleton (head, neck and torso joint; each having three

degrees of freedom). In Sec. 7 and in the supplemental video we

demonstrate the effectiveness of our technique and we compare

our results against state-of-the-art approaches.

4 GENERATING A VIDEO-BASED ACTOR RIG
The first key component of our approach is the fully automatic gen-

eration of a video-based person-specific rig of the target actor from

commodity RGB-D input. The actor rig combines a unified para-

metric representation of the target’s upper body (chest, shoulders,

and neck, no arms) and head geometry with a video-based render-

ing technique that enables the synthesis of photo-realistic portrait

video footage. In this section, we describe the reconstruction of a

fully rigged geometric model of the target actor. This model is then

used as a proxy for video-based re-rendering of the target actor, as

described in Section 5. Fig. 3 shows an overview of the actor rig

generation pipeline.

4.1 Input Data Acquisition
As input, we record two short video sequences of the target actor.

The first sequence is a short stream S = {Ct ,Dt }t of color Ct and
depth Dt images of the target actor under different viewing angles.

We assume that the target actor is sitting on a swivel chair and

is initially facing the camera. The target actor then first rotates

the chair to a left profile view (−90◦), followed by a right profile
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Figure 3: Automatic generation of a fully controllable person-specific target actor rig.We reconstruct a coarse geometric proxy
of the torso andhead based on a commodityRGB-D stream. To gain full parametric control of the target actor, we automatically
rig the model with facial expression blendshapes and a kinematic skeleton.

view (+90◦), while keeping the body and head pose as rigid as

possible. Our starting pose is camera-facing to enable robust facial

landmark detection in the first frame, which is required for later

registration steps. Based on this sequence, we generate most parts

of our actor rig, except eye gaze control, for which we need an

additional recording of the eye motion. In this sequence, the target

actor faces the camera and looks at a moving dot on a screen directly

in front of him. The actor follows the dot with his eyes without

moving the head. This sequence is used for an eye gaze transfer

strategy similar to Thies et al. [2017; 2018]. The complete recording

of these two datasets takes less than 30 seconds, with approximately

10 seconds for the body and 20 seconds for the eye data acquisition

step. Note, we only capture images of the person in a single static

pose. In particular, we do not capture neck motions.

4.2 Reconstruction of the Upper Body and
Head Proxy

We start with the reconstruction of the geometry of the torso and

head of the target actor, based on the recorded depth images Dt
of the body sequence. First, we estimate the rigid pose of the actor

in each frame, relative to the canonical pose in the first frame,

using projective data association and an iterative closest point (ICP)

[Besl and McKay 1992; Chen and Medioni 1992] strategy based

on a point-to-plane distance metric [Low 2004]. We then fuse all

depth observations Dt in a canonical truncated signed distance

(TSDF) representation [Curless and Levoy 1996; Newcombe et al.

2011]. We are using the open source VoxelHashing [Nießner et al.

2013] implementation that stores the TSDF in a memory efficient

manner to reconstruct the actor in its canonical pose. In all our

experiments, we use a voxel size of 4mm. Finally, we extract a mesh

using Marching Cubes [Lorensen and Cline 1987].

For every tracked frame, we also store the rigid transformation

of the body with respect to the canonical pose, which we need for

view-dependent texturing in a later step. For the eye calibration

sequence, we also estimate the rigid pose for each frame, by fitting

the previously obtained model using a projective point-to-plane

ICP. We need these poses later to enable the re-projection of the

eyes in the synthesis stage.

4.3 Multi-linear Face Model to Scan Fitting
To gain full parametric control of the person-specific actor model,

we automatically rig the reconstructed mesh. To this end, we first

fit a statistical morphable face model to establish correspondence

and then transfer facial blendshapes to the actor model. We use the

multi-linear face model of [Thies et al. 2016] that is based on the

statistical face model of Blanz and Vetter [Blanz and Vetter 1999]

and the blendshapes of [Alexander et al. 2009; Cao et al. 2014b].

Sparse Feature Alignment. The used model-based non-rigid reg-

istration approach is based on a set of sparse detected facial feature

points and a dense geometric alignment term. The sparse discrimi-

native feature points are detected in the frontal view of the body

calibration sequence using the True Vision Solution (TVS) feature

tracker
1
. This landmark tracker is a commercial implementation of

Saragih et al. [2011]. We lift the detected feature points to 3D by

projecting them onto the target proxy mesh using the recovered

rigid pose and the known camera intrinsics. The corresponding

3D feature points on the template face are selected once in a pre-

processing step and stay constant for all experiments. The sparse

feature alignment term is defined as:

Esparse(α ,δ ,R, t) =
∑

(i, j)∈Csparse

���� [Rvi (α ,δ) + t] − pj
����2
2
.

Here, α is the vector containing the Nα = 80 shape coefficients of

the face model and the δ are the Nδ = 76 blendshape expression

weights. We include blendshapes during optimization to compen-

sate for non-neutral face expression of the actor. R is the rotation

and t the translation of the face model. The pj are the points on the

proxy mesh and the vi (α ,δ) are the corresponding sparse points
on the template mesh that are computed by a linear combination of

the shape and expression basis vectors of the underlying face model.

The tuples (i, j) ∈ Csparse define the set of feature correspondences.

Dense Point-to-Point Alignment. In addition to this sparse fea-

ture alignment term, we employ a dense point-to-point alignment

energy based on closest point correspondences:

E
dense

(α ,δ ,R, t) =
∑

(i, j)∈Cdense

���� [Rvi (α ,δ) + t] − pj
����2
2
.

The closest point correspondences C
dense

are computed using the

approximate nearest neighbor (ANN) library
2
. We prune correspon-

dences based on a distance threshold (thres
dist
= 10 cm) and on the

orientation of the normals.

1
http://truevisionsolutions.net/

2
http://www.cs.umd.edu/~mount/ANN/
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Statistical Regularization. For more robustness, we use a sta-

tistically motivated regularization term that punishes shape and

expression coefficients that deviate too much from the average:

E
regularizer

(α ,δ) =
∑
i

������ αi
σi,shape

������2
2

+
∑
i

������ δi
σi,exp

������2
2

.

Here, σi,shape and σi,exp are the standard deviations of the cor-

responding shape and blendshape dimensions, respectively. The

weighted sum of these three terms is minimized using the optimiza-

tion method of Levenberg-Marquardt.

Automatic Blendshape Transfer. The established set of dense

point-to-point correspondences allows us to build an expression

basis for the person-specific actor rig by transferring the per-vertex

blendshape displacements of the face model. The basis is only trans-

ferred inside a predefined face mask region, and if the correspon-

dence lies within a threshold distance (thres
transfer

= 5mm). We

use a feathering operation to smoothly blend out the contribution

of the transferred displacements close to the boundary of the mask.

The feathering is predefined through an alpha mask on the face

model. In addition, we transfer semantic information such as an

eye region and a mouth region mask.

4.4 Parametric Body Model to Scan Fitting
In contrast to facial expressions, which are mostly linear, body mo-

tion is non-linear. To accommodate for this, we use a kinematic

skeleton. We automatically rig the person-specific actor model by

transferring the skinning weights and skeleton of a parametric

body model. In our system, we use the SMPL [Loper et al. 2015]

model. We perform a non-rigid model-based registration to the

reconstructed 3D actor model, in a similar fashion as for the face.

First, the required 6 sparse feature points are manually selected.

These markers are used to initialize the shoulder position and the

head position. We then solve for the 10 shape parameters and the

joint angles of the kinematic chain of SMPL. After fitting, we es-
tablish a set of dense correspondences between the two models.

Finally, we transfer the skinning weights, as well as the skeleton.

We also use the correspondences to transfer body, neck and head

region masks with corresponding feathering weights. Note, to en-

sure consistent skinning weights of neighboring vertices, we apply

Gaussian smoothing (5 iterations of 1-ring filtering).

4.5 Tracking Refinement
To improve our results, we refine the per frame tracking information

of the depth sequence based on our final parametric actor rig. To

this end, we use the segmentation of the scan (head and body) and

re-track the calibration sequence independently for both areas. This

step compensates for miss-alignments in the initial tracking due to

slight non-rigid motions of the target during capture. The refined

tracking information leads to an improved quality of the following

video-based rendering step.

5 VIDEO-BASED RENDERING
To synthesize novel portrait videos of the target actor, we apply

video-based rendering with image data from the input video se-

quences and the tracked actor model as geometric proxy. With

video-based rendering it is possible to generate photo-realistic novel

views, in particular, we can correctly synthesize regions for which

it is difficult to reconstruct geometry at a sufficiently high quality,

i.e., hair. To achieve good results, we need good correspondence

between the parametric 3D target actor rig and the video data cap-

tured in the calibration sequence, as they are obtained in our refined

tracking stage (see Sec. 4.5). Based on these correspondences, we

cross-project images from the input sequences to the projection of

the deformed target actor model. We warp separately according

to the torso and head motion, facial expression, and eye motion,

and we take special care for the proper segmentation of fore- and

background. An overview of our view-dependent image synthesis

pipeline is shown in Fig. 4, and the single steps are described in the

following sections.

5.1 Spatio-temporal Foreground Segmentation
First, we generate a foreground/background segmentation (Fig. 5)

using a novel space-time graph cut approach (Fig. 6). We initialize

the segmentation of the given image domain I by re-projecting the

reconstructed and tracked proxy mesh to the calibration images to

obtain an initial maskM. Afterwards, we compute segmentation

masks F , B,Uf , andUb . F and B are confident foreground and

background regions. Between them is an uncertainty region, with

Uf being the probable foreground region, and Ub the probable

background region.

The confident foreground region F = M ⊖ S is computed

by applying an erosion operator M. The confident background

B = I \ (M ⊕S) is the complement of the dilation ofM. In the re-

maining region of uncertainty, we perform background subtraction

in HSV color space using a previously captured background image.

If the pixel color differs from the background image more than a

threshold, the pixel is assumed to be most likely a foreground pixel

and assigned toUf , otherwise toUb . Finally, we remove outliers

using a number of further erosion and dilation operations.

The resulting regions are used to initialize the GrabCut [Rother

et al. 2004] segmentation algorithm
3
. Performing the segmentation

per frame can result in temporally incoherent segmentation. Thus,

we apply GrabCut to the entire 3D space-time volume of the calibra-

tion sequence. We do so by executing the approach independently

on all x-, y-, and t-slices. The resulting foreground masks are com-

bined in a consolidation step to generate the final foreground alpha

mask (see Fig. 6).

5.2 Image Warping
Using the color data observed during the scanning process, we

propose a view-dependent compositing strategy, see also Fig. 4.

Based on the skinning weights, the body is clustered into body

parts, which are textured independently. For each body part, we

first retrieve the color frame of the calibration sequence that best

matches its current modified orientation. We then initialize the

per-view warp fields exploiting the morphed 3D geometry and

cross-projection. To this end, we back-project the model into the

retrieved frame using the tracking information. Then, we compute

a warp field, i.e., a 2D displacement field in image space. The warp

field maps from the re-projection in the retrieved image and the

projection of the current model into screen space. Using a Laplacian

3
https://opencv.org
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Figure 4: Overview of the view-dependent image synthesis. Starting with a depth image of our target actor (left), we search
for the closest frames in the input sequence, independently for the current head, neck, and body positions. For each such
frame, a warp field is computed, and the frames are warped to the correct position. The warped images are then combined
after a background subtraction and composited with the background to achieve a photo-realistic re-rendering. The shown uv
displacements are color coded in the red and green color channel.

Figure 5: Our temporal background subtraction: the top row
shows the input color images and the middle row the ex-
tracted foreground layer using our space-time graph cut seg-
mentation approach. The bottom row shows a background
replacement example.

image pyramid, we extend the warp field to the complete image

domain. Finally, we use the extended warp field as described above

and apply it to the retrieved image frames. Thus, we ensure that

we also re-synthesize regions that are not directly covered by the

proxy mesh, e.g., hair strands, and that we do not render parts of

the mesh where actually the background is visible. The final per-

region warps are blended based on a feathering operation using

the body, neck, and head masks. Note, our image-based warping

technique preserves the details from the calibration sequence since

we select the texture based on the pose of the corresponding body

part. This selection can be seen as a heuristic of finding the texture

with minimal required warping to produce the output frame. Thus,

detailed images with hair strands can be synthesized.

Figure 6: Temporal GrabCut. On the left we show the output
of the original GrabCut approach and on the right our tem-
poral modified GrabCut. Our approach combines the seg-
mentation results along the xt , yt and xy planes. The results
on the left show the foreground masks retrieved from the
xy GrabCuts. Our extension of GrabCut to the temporal do-
main reduces flickering artifacts, thus, the foreground seg-
mentations in the xt and yt planes are smoother.

6 REAL-TIME REENACTMENT
Our approach enables real-time reenactment of the head and torso

in portrait videos. This requires real-time tracking of the source

actor and an efficient technique to transfer the deformations from

the source to the target. To this end, we apply our video-based

rendering approach to re-render the modified target actor in a

photo-realistic fashion. In the following, we detail our real-time

upper body and face tracking approach, and describe the deforma-

tion transfer. In order to ensure real-time reenactment on a single

consumer level computer, all components are required to run in a

relatively short time span.
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6.1 Source Tracking
We track the source actor using a monocular stream from a com-

modity RGB-D sensor (see Fig. 1). In our examples, we use either

an Asus Xtion RGB-D sensor or a StructureIO sensor
4
. Our default

option is the StructureIO sensor, which we set up for real-time

streaming over WiFi in a similar configuration as Dai et al. [2017].

The StructureIO sensor uses the RGB camera of the iPad, allowing

us to record the RGB stream at higher resolution (1296 × 968) com-

pared to the 640 × 480 resolution of the Asus Xtion. However, the

WiFi streaming comes also with a latency of a few frames which is

noticeable in the live sequences in the accompanying video, and the

overall framerate is typically 20Hz due to the limited bandwidth.

The tracking of the source actor consists of two major parts, the

face tracking and the upper body tracking as can be seen in Fig. 7.

Figure 7: Source actor tracking: Top: example input se-
quence of a source actor. Bottom: corresponding tracking
results as overlay. The fitted face model is shown in red and
the proxy mesh for tracking the upper body in green.

6.1.1 Facial Performance Capture. Facial performance capture is

based on an analysis-by-synthesis approach [Thies et al. 2015] that

fits the multi-linear face model that is also used for automatic rig-

ging. We jointly optimize for the model parameters (shape, albedo,

expression), rigid head pose, and illumination (first three bands

of spherical harmonics) that best reproduce the input frame. The

energy function is composed of a sparse landmark term that mea-

sures the distance of the model to detected 2D features (computed

by the TVS marker tracker), a dense photometric appearance term

that measures the color differences in RGB space, and a dense

geometry term that considers point-to-point and point-to-plane

distances from the model to the depth observations. For real-time

performance, the resulting optimization problem is solved using a

data-parallel Gauss-Newton solver. For more details on dense facial

performance capture, we refer to Thies et al. [2015; 2016].

6.1.2 Upper Body Tracking. In order to track the upper body

of the source actor within the limited computational time budget,

we first compute a coarse mesh of the upper body. To achieve

this mesh, we average a couple of depth frames that show the

frontal facing source actor (about 20 frames). We use the tracking

information of the face to determine the region of interest in this

averaged depth map. That is, we segment the foreground from the

background and use the region below the neck. We then extract

the proxy mesh by applying a connected component analysis on

the depth map. We track the rigid pose of the upper body with

4
https://structure.io/

a model-to-frame ICP that uses dense projective correspondence

association [Rusinkiewicz and Levoy 2001] and a point-to-plane

distance measure.

6.1.3 Eye Gaze Tracking. To estimate the eye gaze of the source

actor, we use the TVS landmark tracker that detects the pupils and

eye lid closure events. The 2D location of the pupils (P0, P1 ∈ R2,
left and right pupil) are used to approximate the gaze of the person

relative to the face model. We estimate the yaw angle of each eye

by computing the relative position of pupil between the left (C
0,l )

and right eye corner (C0,r ):

yaw0 =
| |P0 −C

0,l | |2

| |P0 −C
0,l | |2 + | |P0 −C0,r | |2

· 90◦ − 45
◦ .

The pitch angle is computed in a similar fashion. We ignore squint-

ing and vergence, and average the yaw and pitch angle of the left

and right eye for higher stability. Finally, we map the yaw and pitch

angle to a discrete gaze class that is defined by the eye calibration

pattern, which was used to train the eye-synthesis for the target

actor. If eye closing is detected, we overwrite the gaze class with

the sampled closed eye class. This eye class can then be used to

retrieve the correctly matching eye texture of the target rig.

6.2 Expression, Pose, and Gaze Transfer
Since the face model of the source actor uses the same blendshape

basis as the target rig, we can directly copy the expression param-

eters. In addition, we apply the relative body deformations of the

head, neck and torso to the corresponding joints of the kinematic

skeleton of the target rig. These relative body deformations are com-

puted via inverse kinematics using the tracked face and the tracked

torso of the source actor. Since the rigid pose of the source and

target actor is the same after applying the skeleton deformations,

we can copy the mouth interior from the source to the target. In

order to compensate for color and illumination differences, we use

Poisson image editing [Pérez et al. 2003] with gradient mixing. We

use predefined masks on the face template to determine the regions

that must be copied and the areas where gradient mixing is applied

(between the source image content and the synthesized target im-

age). Using the eye class index estimated by our gaze tracker, we

select the corresponding eye texture from the calibration sequence

and insert the eye texture, again using Poisson image blending. To

produce temporally smooth transitions between eye classes, we

blend between the eye texture of the current and preceding frame.

Fig. 8 shows the used textures and the extent of the eye and mouth

blending masks that were applied to generate our reenactment

results.

7 RESULTS
In this section, we test and evaluate our approach and compare

to state-of-the-art image and video reenactment techniques. All

following experiments have been performed on a single desktop

computer with an Nvidia GTX1080 Ti and a 4.2GHz Intel Core

i7-7700K processor.

Fig. 9 shows results from our live setup using the StructureIO

sensor; please also see the accompanying video for live footage.

As the results show, our approach generates high-quality reenact-

ments of portrait videos, including the transfer of head pose, torso

7
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Figure 8: Final compositing of the eye and mouth region;
from left to right: driving frame of the source actor (used
for mouth transfer), target actor eye class sample that cor-
responds to the estimated gaze direction of the source actor,
cross-projection of the mouth and the eyes to the deformed
target actor mesh, and the final composite based on Poisson
image blending.

Table 1: Breakdown of the timings of the steps of our reen-
actment pipeline: dense face tracking (DenseFT), dense body
tracking (DenseBT), deformation transfer (DT), morphing
of the target actor mesh and image-based video synthesis
(Synth), and cross projection and blending of the eyes and
the mouth region. The first row shows timings for 640x480
resolution (Asus Xtion) and the second row the timings for
1296x968 (StructureIO).

DenseFT DenseBT DT Synth CB FPS

Avg. 10.91ms 1.34ms 1.13ms 4.41ms 3.25ms 47.5Hz
Std.Dev. 0.43 0.14 0.04 0.20 0.09

Avg. 13.49ms 4.31ms 1.17ms 14.11ms 10.81ms 22.8Hz
Std.Dev. 0.43 0.21 0.09 0.31 0.21

movement, facial expression, and eye gaze, for a large variety of

source and target actors. The entire pipeline, from source actor

tracking to video-based rendering, runs at real-time rates, and is

thus applicable to interactive scenarios such as teleconferencing

systems. A breakdown of the timings is shown in Tab. 1.

In the following, we further evaluate the quality of the synthe-

sized video output and compare to recent state-of-the-art reenact-

ment systems. Comparisons are also shown in the accompanying

video.

Evaluation of Video-based Rendering. To evaluate the quality im-

provement due to our video-based rendering approach, we compare

it with the direct rendering of the colored mesh obtained from the

3D reconstruction; see Fig. 10. Both scenarios use the same coarse

geometry proxy that has been reconstructed using VoxelHashing

[Nießner et al. 2013]. As can be seen, the video-based rendering

approach leads to drastically higher quality compared to simple

voxel-based colors. Since the proxy geometry can be incomplete,

holes become visible in the baseline approach, e.g., around the ears

and in the hair region. In our video-based rendering approach, these

regions are filled in by our view- and pose-dependent rendering

strategy using the extended warp field, producing complete and

highly-realistic video output. Since the actor was scanned with

closed mouth, opening of the mouth leads to severe artifacts in

the baseline approach, while our mouth transfer strategy enables a

plausible synthesis of the mouth region. Finally, note how the hair,

including its silhouette is well reproduced.

Evaluation of Eye Reenactment. We compare our eye gaze reen-

actment strategy to the deep learning-based DeepWarp [Ganin

et al. 2016] approach, which only allows for gaze editing. As Fig. 11

shows, we obtain results of similar quality if only gaze is redirected.

Note, in contrast to our method, DeepWarp is not person specific,

i.e., to re-synthesize realistically looking eyes, we need a calibration

sequence.

Photometric Error in Self Reenactment. To evaluate the quality of

our entire reenactment pipeline, we conducted a self-reenactment

comparison. We first build a person-specific rig of a particular actor

and then re-synthesize a sequence of the same actor. In this scenario,

we can consider the source video as ground truth, and compare

it with our synthesized result. Three frames of the comparison

are shown in Fig. 12. The first image shows the reference pose, so

this frame contains no error due to motion. Thus, the error of the

first frame (0.04 ℓ2 distance in RGB color space) shows the error

of our rerendering, and thus can be seen as baseline for the other

frames. The average color difference error of the following frames

is 0.0528, which is very close to this baseline. We assume that most

of the additional error is due to the rigid misalignment of the head,

which stems from the low-dimensional kinematic model. Please

note that while the synthesized images do not match the ground

truth perfectly, the visual quality of the results is nonetheless close

to photo-real, and head and body pose are plausible.

Comparison to Face2Face. A comparison to Face2Face [Thies

et al. 2016] is shown in Fig. 13. Face2Face only reenacts facial

expression, and does not adapt head movement or eye gaze. Hence,

the video flow of Face2Face often seems out-of-place, since the

timing of all motions do not align, as noted by Suwajanakorn et

al. [2017]. The effect is particularly visible in live videos, and it

severely restricts the applicability to teleconferencing settings. Our

approach achieves comparable quality of single frames, and gen-

erates more believable reenactment results by jointly re-targeting

the rigid head pose, torso motion, facial expression, and eye gaze

direction. Note that our technique copies the mouth from the source

actor to the final output. Thus, the identity of the target person is

slightly changed. Since Face2Face uses a database of mouth interiors

of the target actor, the identity is unchanged. While it is straight-

forward to incorporate the mouth retrieval technique presented in

Face2Face, we decided against it, because it drastically increases

the length of the calibration phase and usability (since only mouth

interiors that have been seen in the calibration sequence can be

reproduced; note that also expressions with different rigid poses of

the head would have to be captured in such a calibration).

Comparison to Bringing Portraits to Life. We also compare

our method with Bringing Portraits to Life, an off-line image

reenactment approach [Averbuch-Elor et al. 2017], which creates

convincing reactive profile videos by transferring expressions and

slight head motions of a driving sequence to a target image. It
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Figure 9: Real-time portrait video reenactment results of our system for a variety of source and target actors. The source actor
drives the head motion, torso movement, facial expression, and the eye gaze of the target actor in real time.
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Figure 10: Evaluation of video-based rendering: we com-
pare our video-based rendering (right) and a simple colored-
mesh actor proxy (middle). Both scenarios use the same
coarse geometric proxy. Our video-based rendering ap-
proach leads to drastically higher realism in all regions and
produces photo-realistic video output, while the colored-
mesh lacks this fidelity.

Figure 11: Gaze redirection comparison: we compare our eye
reenactment strategy (left) to the DeepWarp [Ganin et al.
2016] gaze redirection approach (right). Note that DeepWarp
merely modifies gaze direction, but does not perform a full
reenactment of portrait videos.

only requires a single image of the target actor as input, but does

not provide any control over the torso motion and gaze direction.

Fig. 14 shows results of the comparison. We achieve similar quality

in general, but Bringing Portraits to Life struggles for larger

head pose changes. In comparison, our approach enables free head-

pose changes, and provides control over the torso motion, facial

expression, and gaze direction. Since our method runs at real-time

rates, our approach can also be applied to live applications, such as

teleconferencing.

Comparison to Avatar Digitization. In Fig. 15, we also com-

pare to the Avatar Digitization approach of Hu et al. [2017].

From a single image, this approach generates an avatar, that can

be animated and used for instance as a game character. However,

the approach (as well as comparable avatar digitization approaches

[Ichim et al. 2015]) generate stylized avatars that are appropriate as

game-quality characters and that can be used in gaming and social

VR applications. In contrast, we aim to synthesize unseen video

Figure 12: Self-Reenactment Evaluation: the first column of
the images shows the reference pose of the source and tar-
get actor; all following deformations are applied relative to
this pose. For this experiment, we rigidly align the refer-
ence target actor body to the reference frame of the source
actor in order to be able to compare the outputs. We com-
pare the result to the source image using a per-pixel color
difference measure. The other two columns show represen-
tative results of the test sequence with expression and pose
changes. In the bottom row, the color difference plot of the
complete test sequence is depicted. Themean ℓ2 color differ-
ence over the whole test sequence is 0.0528measured in RGB
color space ([0, 1]).

Figure 13: Comparison to Face2Face [Thies et al. 2016];
from left to right: source actor, the reenactment result of
Face2Face, and our result. In gray, we show the underlying
geometry used to generate the output images.
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Figure 14: Comparison to Bringing Portraits to Life

[Averbuch-Elor et al. 2017]: Our approach generalizes bet-
ter to larger changes in head and body pose than the image-
warping based approach ofAverbuch-Elor et al. [2017]. In ad-
dition, our methods enables the joint modification and con-
trol of the torso motion and gaze direction. Note that while
their approach runs offline, ours allows control the entire
portrait video at real-time frame rates, allowing application
to live teleconferencing.

Figure 15: Avatar Digitization reconstructs stylized game-
quality characters from a single image. In this example, the
avatar was generated from the first image of the second row
in Fig. 14.

footage of the target actor at photo-realistic quality as shown in

Fig. 9.

8 LIMITATIONS
We have demonstrated robust source-to-target reenactment of com-

plete human portrait videos at real-time rates. Still, a few limitations

remain, and we hope that these are tackled in follow-up work. One

drawback of our approach is the requirement of a short scanning

sequence based on an RGB-D camera. While RGB-D sensors are

already widespread, the ultimate goal would be to built the video-

based target rig based on an unconstrained monocular video of the

target actor, without a predefined calibration procedure. In addition,

scene illumination is currently not estimated, and therefore illumi-

nation changes in reenacted videos cannot be simulated. We also

do not track and transfer fine scale details such as wrinkles since

Figure 16: Limitation: Fine scale detail such as wrinkles are
not transferred. The close-ups show the difference between
the input and the output.

Figure 17: Limitation: Strong head rotations or occlusions in
the input streamof the source actor lead to distortions in the
reenactment result.

they are not represented by the used multi-linear face model (see

Fig. 16). While Cao et al. [Cao et al. 2015] demonstrate tracking of

fine scale details, it has not be shown how to transfer these wrinkles

to another person. This is an open question that can be tackled in

the future. Under extreme pose changes, or difficult motion of hair

(see Fig. 18), the reenacted results may exhibit artifacts as neither

the model nor the video-based texturing may be able to fully rep-

resent the new view-dependent appearance. In Fig. 17 we show

failure cases that stem from extreme head rotations and occlusions

in the input stream of the source actor. Note that the proposed

technique has the same limitations as other state-of-the-art reen-

actment methods like Face2Face [Thies et al. 2016]. In particular,

the used analysis-by-synthesis approach to track the face uses the

parameters of the previous frame as an initial guess, thus, fast head

motions require high frame rates of the input camera otherwise

the tracking is disturbed by the motion (for more details on the

limitations of the face tracking we refer to the publications [Thies

et al. 2015, 2016]). Our approach is also limited to the upper body.

We do not track the motions of the arms and hands, and are not

able to re-synthesize such motions for the target actor. Ideally, one

would want to control the whole body; here, we see our project

as a stepping stone towards this direction, which we believe will

lead to exciting follow up work. We do believe that the combina-

tion of a coarse deformation proxy with view-dependent textures

will generalize to larger parts of the body, if they can be robustly

tracked.
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Figure 18: Limitation: Hair is statically attached to the skele-
ton structure of the delegate mesh.

9 CONCLUSION
We introduced HeadOn, an interactive reenactment system for hu-

man portrait videos. We capture facial expressions, eye gaze, rigid

head pose, and motions of the upper body of a source actor, and

transfer them to a target actor in real time. By transferring all rele-

vant motions from a human portrait video, we achieve believable

and plausible reenactments, which opens up the avenue for many

important applications such as movie editing and video confer-

encing. In particular, we show examples where a person is able to

control portraits of another person or to perform self-reenactment

to easily switch clothing in a live video stream. However, more

fundamentally, we believe that our method is a stepping stone to-

wards a much broader avenue in movie editing. We believe that the

idea of coarse geometric proxies can be applied to more sophisti-

cated environments, such as complex movie settings, and ultimately

transform current video processing pipelines. In this spirit, we are

convinced and hopeful to see many more future research works in

this exciting area.
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