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Patch-Based Occlusion Culling for Hardware Tessellation

Matthias Nieflner - Charles Loop

Abstract We present an occlusion culling algorithm
that leverages the unique characteristics of patch prim-
itives within the hardware tessellation pipeline. That is,
unseen patches are costly to compute, but easy to find
screen space bounds for. Our algorithm uses the well
known hierarchical Z-buffer approach, but we present a
novel variant that uses temporal coherence to maintain
lists of visible and occluded patches. Patches may be an-
imated and have applied displacement maps. We also
allow traditional triangle mesh geometry to serve as oc-
cluders. This makes our scheme ideally suited for patch
based articulated character models, moving within a
polygonal environment.

Keywords Real-time Rendering - Hardware Tessella-
tion - Culling

1 Introduction

The recent elevation of patch primitives to first class
objects in the graphics pipeline offers a unique oppor-
tunity to revisit classic approaches to visibility culling
and improve upon them with new insights tailored to
the computational demands of patch processing. Previ-
ous occlusion culling algorithms required a scene graph
structure whose leaves bound a sufficiently dense, and
static collection of geometry in order amortize their
cost. This limited occlusion culling to fixed scene graphs
that must be traversed at runtime. Our new patch based
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approach is unstructured in the sense that we can pro-
cess standard lists (buffers) of patch primitives and still
achieve significant performance gains.

The key observations we leverage are 1) that patches
are compact and are (relatively) easy to find bounds for
in screen space; and 2) that committing to the evalua-
tion, tessellation, and generation and rejection of trian-
gles, corresponding to a patch is (relatively) expensive.
Since the cost of processing patches that are not seen
is high, and the cost of finding screen space bounds
for patches is low, the extra computation needed to
perform occlusion culling is easily amortized. The al-
gorithm we propose in this paper is easy to implement
and requires no pre-processing of patch based models.
Since the screen space bounds of individual patches are
re-computed every frame, we automatically support an-
imated models. Furthermore, to maximize utility, we
allow patches to have displacement maps applied and
offer a novel technique for bounding such patches.

The strategy behind our algorithm is to use tempo-
ral coherence to maintain the visible/occluded status of
individual patches, use the visible patches to build a hi-
erarchical Z-buffer [4] on-the-fly, and then to update the
visibility status of patches. Our method is conservative
in that occluded patches may occasionally be rendered
(needlessly), but visible patches are always rendered.
The culling overhead for our algorithm is small com-
pared to the computational savings, resulting in signif-
icant performance gains (see Figure 1). Note that even
for simple scenes (e.g., single objects) and small tess
factors our algorithm is effective (see Figure 9).

We summarize our main contributions as follows:

— Fast and efficient occlusion culling for patches
— Novel bounds for patches with displacements
— Dynamic scenes with patch occluders and occludees
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(a) 5.7 vs 12.1 ms

(c) 3.4 vs 9.0 ms

(d) 6.7 vs 8.7 ms

Fig. 1 Our algorithm performs culling on a per patch basis and supports patches w/ and w/o displacements. The images
above are rendered both using, and not using, our culling method; see the performance gain below the respective image. Our
method significantly speeds up rendering of scenes with even moderate depth complexity (a, 64.2% culled) including triangle
mesh occluders (¢, 70.6% culled). Even when having intra-object occlusion only, render time can be reduced (b, 30.4% culled;

d, 30.5% culled).

2 Previous Work

Hardware Tessellation: Hardware tessellation allows
parametric surface patches to be evaluated and ren-
dered on-chip, greatly reducing costly off-chip memory
accesses. Several patching schemes have been proposed
that are accelerated by this architecture [16], [7], [11].
Our work is agnostic to a particular patching scheme;
our only assumption is that patches obey the convex-
hull property, and the first partial derivatives can be
bounded. For simplicity, we consider widely used bicu-
bic Bézier patches, though our algorithm is easily ex-
tended to other patch types.

Back-patch Culling Techniques: While back-face
culling is a standard method in today’s graphics hard-
ware to reduce triangle rasterization and pixel /fragment
shading operations, back-patch culling can be analo-
gously applied in order to avoid costly surface evalu-
ations. Such schemes take patch normals or tangent
planes into account in order to determine whether a
patch is back or front-facing. The cone of normals is
one such technique [14]. Though the cone of normals
provides tight normal bounds, its computation is rela-
tively costly. An approximate cone of normals can be
computed at low cost by combining a tangent and bi-
tangent cone [12]. Munkberg et al. [10] used this in
the context of bounding displaced patches. We use a
similar idea to deal with displaced patches, however,
our bounds are optimized with respect to screen space
area and thus provide better culling results. A general
problem with back-patch culling is the inability to deal
with displaced patches. Hasselgren et al. [6] address this
by using a Taylor series to represent the displaced sur-
face. Nevertheless, this has severe limitations (e.g., can-
not deal with fractional tessellation) and its cull rate
is poor. A near optimal back-patch culling technique,
making use of a parametric tangent plane, has recently
appeared [8]. Though effective, the cost of this method
is relatively high.

Occlusion Culling: Instead of following a back-
patch culling approach, our method considers occlusion
culling of patches. There exist many occlusion algo-
rithms in the context of polygon rendering. A survey
of early methods is provided by Cohen-or et al. [2]. On
modern GPUs, hardware occlusion queries provide in-
formation about whether an object contributes to the
current frame. In OpenGL GL_NV_conditional _render
(predicate rendering in D3D) allows conditional ren-
dering without GPU-CPU synchronization; i.e., if an
occlusion query is not yet complete until the next con-
ditional draw call, rendering will be performed ignoring
the actual query result. There are several methods that
efficently use hardware occlusion queries by reducing
the number of issued queries in the context of per ob-
ject occlusion culling [13], [1], [5], [9]. However, all these
algorithms share several problems that makes their ap-
plication on a per patch level inefficient: they require
separate draw calls for each cull primitive (this severely
affects performance since thousands of separate draw
calls could be necessary to render a single object); spa-
tial hierarchies are required on the CPU side to limit the
number of issued queries (updates become costly under
animation); rasterizing bounding geometry creates ad-
ditional overhead (latency and compute). Engelhardt
and Dachsbacher [3] propose two methods for granu-
lar visibility queries that make query results available
on the GPU: pixel counting with summed area tables
and hierarchical item buffers. The first method assigns
query objects to color channels and uses summed area
tables to count covered pixels. Thus, only four query
objects per region are supported, which is insufficent
considering thousands of patches whose bounds overlap
particularly when considering displacements. Hierarchi-
cal item buffers write IDs of query objects to resulting
pixels. The resulting buffer is interpreted as a point list
and in a second (count) renderpass a vertex shader dis-
tributes points (i.e., query IDs) to pixels accordingly.
With alpha blending enabled the number of covered
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Fig. 2 Overview of our culling pipeline within a frame: first, patches tagged visible are rendered; the resulting depth buffer
is used to construct the Hi-Z map. Next, all patches are tested for visibility against the Hi-Z map. Last, all patches that were
previously tagged occluded but are now visible (i.e., newly-visible) are rendered.

pixels can be obtained for each query object. While this
might be possible for a larger number of query objects,
rendering a single point for each pixel (i.e., in practice
over a million points) seems to be significant overhead.
In addition, on-the-fly bounding geometry computation
and rasterization remains a problem.

We base our method on the Hierarchical Z-buffer
proposed by Greene et al. [4]. They use an object-space
octree of the scene geometry and a screen space Z-
pyramid (Hi-Z map). The pyramid’s lowest level is the
Z-buffer; each higher level is constructed by combining
four Z values into a 7 value at the next lower level by
choosing the farthest Z value from the observer. Then
the cubes of the octree are tested against the best fitting
entry in the Hi-Z map. Shopf et al. [15] use the Hi-Z map
to perform culling based on geometry instances. As an
extension to the original hierarchical Z approach, they
use bounding spheres and four Hi-Z map samples to ob-
tain better coverage. However, in their approach occlud-
ers (i.e., the terrain) are fixed and occlusion culling is
only applied to selected objects (i.e., characters). Since
they use geometry instances tested objects all (must)
have exactly the same topology and obtaining the cull
decisions involves a CPU query.

In contrast to previous occlusion culling methods
our approach supports fully animated objects and does
not require any pre-computed scene data structures.
Furthermore, we are able to cull subsets of objects since
our algorithm works at the patch level; there are no
static occluder lists, so all objects can act as occluders
or be occluded.

3 Culling Pipeline

Our algorithm works by maintaining visibility status
bits of individual patches (visible, occluded, or newly-
visible) as each frame is rendered. Assume that a frame
has already been rendered and these status bits have
been assigned to patches. At the start of a new frame,
patches marked as visible are rendered. From the Z-
buffer of this frame, a hierarchical Z-buffer (or Hi-Z
map) is built using a compute shader (or CUDA ker-

nel). Next, all patches are occlusion tested against the
newly-constructed Hi-Z map. Patches passing this test
(i.e., not occluded) are either marked as visible if they
were previously visible, or newly-visible if they were
previously occluded; otherwise they are marked as oc-
cluded. Finally, all patches marked as newly-visible are
rendered to complete the frame. See Figure 2 for a flow
diagram of this process.

The simplest way to initialize the visibility status
bits of patches would be to mark all patches visible.
However, this would cause all patches to be rendered
in the first frame. To avoid this worst-case behavior,
we mark half of the patches as visible and the other
half occluded. Even randomly assigning visibility sta-
tus bits will allow at least some patches to be occluded;
which is better than none. After the first frame has
been rendered, however, we rely on temporal coherence
to approximate these visible and occluded sets. Our ob-
servation is that between frames, most visible patches
stay visible while most occluded patches stay occluded.
Obviously, for dynamic scenes some visible patches will
become occluded between frames, and vice versa (see
Figure 9 right). One of the key features of our algo-
rithm is to efficiently track these changes so that each
new frame begins with a good approximation to the set
of visible patches.

While the main focus of our work is on hardware
tessellation of animated, patch-based objects such as
characters, scene environments are often represented by
triangle meshes. We render triangle meshes before gen-
erating the Hi-Z map so their depth information is in-
cluded in the Hi-Z map construction. This will allow tri-
angle meshes to be treated as occluders for patch-based
objects. It is also straightforward to combine this per
patch algorithm with previous approaches that focus on
entire objects. The Hi-Z map information can be used
to determine whether an object’s bounding volume is
fully occluded. However, computing bounding volumes
of dynamic objects on-the-fly can be be costly.
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3.1 Aggressive Culling

The pipeline shown in Figure 3 can be even simplified
by omitting the last render pass. Updating patch tags
will still fix rendering in the subsequent frame. This
will cause patches becoming visible to appear with a
one frame delay. This may be tolerable in some real-
time applications since that delay may not be noticeable
at high frame-rates. However, we do not evaluate this
option in our results.

4 Applying Cull Decision

We now describe how to determine patch visibility within
the culling pipeline presented in Section 3. We separate
this into the problem of obtaining occlusion information
(i.e., Hi-Z map creation) and the culling test itself.

4.1 Computing Occlusion Data

As mentioned in Section 3, visible patches (i.e., occlud-
ers) are rendered first. In order to obtain occlusion in-
formation we employ a hierarchical Z-buffer approach.
Therefore, we use the depth buffer resulting from ren-
dering the visible patches to generate a Hi-Z map [4],
[15].

The Hi-Z map construction is similar to standard
mip mapping where four texels are combined to deter-
mine a single texel of the next mip level. Instead of
averaging texels, the value of the new texel is obtained
by the maximum depth value of the corresponding four
child texels (i.e., it is set to the largest distance value).
Thus, within a region covered by a particular texel (no
matter which mip level) a conservative bound is given,
so that at the texel’s location no objects with a larger
depth value are visible. Five levels of an example Hi-
7Z map are shown in Figure 3. Note that watertight
patch joins are crucial for a good Hi-Z map since cracks
at patch boundaries will propagate a false depth value
through the hierarchy.

We found binding the hardware depth buffer to be
relatively costly, see Figure 7 right. Though the highest
resolution level of the Hi-Z map could correspond to
depth buffer, we avoid copying this data and use a half
resolution image as the highest level. This is reasonable
as the full resolution map would only be useful to cull
tiny patches. We assume that such tiny patches will not
be tessellated with a high enough tess factor to make
patch occlusion culling effective; thus the highest level
is not needed.

The different Hi-Z levels are stored in a single tex-
ture with its respective mip levels to obtain fast access.

We deal with non-power-of-two size images by enlarg-
ing the Hi-Z map’s width and height to the next greater
(or equal) power of two. This is necessary since the de-
fault size of mipmap levels will always be even; e.g., a
5 x 5 texture will be down sampled to 2 x 2. The re-
sized Hi-Z map, however, allows us to take all texels
of the parent level into account; e.g., a 5 X 5 texture
will be down sampled to 3 x 3. While unused texels are
initialized with 0, all kernels can be used without any
modification.

'L

Fig. 3 Five levels (0,4,5,6,7) of a Hi-Z map corresponding to
a view of the Bigguy model.

4.1.1 Cull Decision

Cull decisions are applied per patch. As a represen-
tative patch primitive we use bicubic Bézier patches
consisting of a 4 x 4 array of control points (the ba-
sic approach could be applied to various other patching
schemes). For now we assume the patches do not have
displacement maps applied; we will extend the algo-
rithm to include displacements in Section 4.2. In order
to determine visibility of a patch we compute its axis-
aligned bounding box (AABB) in clip space. We use the
AABB’s front plane to test against the Hi-Z map (see
Section 4.1). Depending on the bounding box’s width
and height in screen space a particular level of the Hi-Z
map is chosen: level = [log,(max(width, height))]. The
bounding box’s area will be conservatively covered by
at most 4 texels of the selected Hi-Z map level. Con-
sidering multiple Hi-Z map entries allows us to achieve
better coverage; see Figure 4 for the distinct Hi-Z ac-
cess patterns. If the respective depth values of the Hi-Z
map are all smaller than the minimum Z value of the
patch’s bounding box, we set the visibility status bit of
the patch to occluded.

IIIIIIIIIIIEIIII

Fig. 4 Different Hi-Z access patterns; at most four texels
(blue) are chosen to cover the screen space bounding rectangle
(yellow) of a patch. The case that only one texel is used (right)
is special since it only applies at the finest Hi-Z level where
no further refinement is possible.
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Since we must compute the screen space bounding
box of a patch to perform occlusion culling, we can also
apply view frustum culling at virtually no cost. That
is, patches whose bounding box lies entirely outside of
the clipping cube are culled. We clamp bounding box
corners to screen space if they are partially outside, to
ensure that all corners map to Hi-Z values. While we
perform both culling methods in the same kernel, view
frustum culling is applied first since its computation is
less costly.

4.2 Displaced Patches

Displacement mapping is an important use case for
hardware tessellation as it allows adding high resolution
geometric detail at low cost. We now adapt our algo-
rithm to handle patches with displacements. Although
determining the patch bounds is different, creating the
Hi-Z map (see Section 4.1) is the same for patches with,
and without, displacements since we obtain visibility
information directly from the depth buffer.

For displaced patches, we use a camera-aligned frus-
tum (CAF) as a bounding volume; that is, a frustum
whose side planes contain the origin in camera space.
In camera space the eyepoint is at the origin and the
viewing direction is the positive z-axis (in OpenGL it’s
the negative z-axis). Unlike the non-displaced case, we
do not yet apply the perspective transform since this
projective mapping would destroy Euclidean distance
metrics that we rely on to construct our bounds.

First, control points are transformed to camera space.

We then find the minimum Z value (minZ) among the
control points to determine the front plane of the CAF
(a plane perpendicular to the viewing direction). Next,
we project the patch control points onto the CAF’s
front plane. Since control points P; are in camera space,
we can achieve this by coordinate rescaling: P/ = P; -
%"ZZ. Side planes of the CAF are then obtained by
computing the minimum and maximum x,y values of
the P/. Note that the resulting frustum is the general-
ization of the screen space AABB. Therefore, its screen
space projection will give the same result non-displaced
patches (Section 4.1.1), if all displacements were zero.
In order to bound the range of patch normals to
which displacements are applied, we compute a cone-of-
normals for each patch. This cone is represented by an
aperture angle « and cone axis a. We consider the con-
struction of Shirmun and Abi-Ezzi [14] (accurate cone)
or the method of Sederberg and Meyers [12] (approx-
imate cone); the trade-off being accuracy versus com-
putational cost. Since obtaining the accurate cone is
relatively costly (see Figure 7 left), our choice for an-
imated patches will be the approximate version. The

accurate cone may be still be used for static objects
where the cone can be precomputed.

|cos(arccos(dy,) + a) | |

“‘cos(arccos((ix) —-a

Fig. 5 The construction of our camera-aligned frustum
(CAF). Left; the cone axis a and the aperture o determine
the extension in the positive x direction (67 ). Right; the CAF
(red) is determined in camera space for two control points.

We also find bounds on the scalar displacement val-
ues and require the maximum D,y to be positive (or
zero) and the minimum Dy, be negative (or zero).
The displacement bounds, the cone axis a, and aper-
ture «, are used to extend the CAF so that it will con-
servatively bound the displaced patch. For each camera
space coordinate, we compute positive and negative ex-
tensions as follows (see Figure 5 left):

if (az > cos(a))
=1
else
6+ = max(cos(arccos(az) + @), cos(arccos(az) — a))

if (—ay > cos(a))

0 = max(cos(arccos(—ag) + «), cos(arccos(—az) — «))

This allows us to compute a minimum and maxi-
mum bound for each control point:
Pmax =P + S;f =P + maX(Dmax : 5+a _Dmin . 57)
Ppin =P —96; = P—max(Dmax - 6, —Dpmin - 07)

Pax and P, define AABBs for each control point
and determine the minZ value, i.e., the CAF front plane.
In order to construct the CAF, the corner points of
all AABBs are projected on the CAF front plane (see
Figure 5, right). Finally, the CAF is transformed into
screen space by projecting the four corner points of
its front plane. Visibility for the screen space bound-
ing box is determined the same way as described in
Section 4.1.1. Both occlusion and view frustum culling
benefit from the tight CAF bounds.

Note that for a given cone of normals the CAF pro-
vides an optimal screen space bound. Figure 6 shows
the difference between our bounds and state-of-the-art
previous work using both the same cone.
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Fig. 6 Different bounding methods for displaced surfaces
visualizing object (purple) and screen space (black quads)
bounds: OOBB (object-oriented bounding box [10]), CAF
(ours) and a comparison between OOBB (red) and CAF
(yellow); both using the approximate cone of normals. Our
bounds generalize axis-aligned screen space bounds and thus
provide optimal results for a given cone of normals.

5 Implementation Details

Our algorithm was implemented using DirectX 11 with
HLSL shaders. Since patches are tagged either wvisible
or occluded, a binary flag is sufficient to define visibility
status. A second binary flag is required to mark a patch
as newly-visible, to be rendered in the next draw call.
Both flags are combined in a per object texture that
contains one value for each patch. Cull decisions are de-
termined in a compute shader that runs one thread per
patch, with the results being stored in the previously
mentioned texture. This texture is then accessed in the
constant hull shader, where patch culling is applied by
setting respective tess factors to zero. This turned out
to be faster than computing cull decisions directly in the
hull shader. We attribute the poor constant hull shader
performance to the fact that there is only a single con-
stant hull shader thread running per warp. Since there
is no measurable context switch overhead between ren-
dering and compute in DirectX 11, we also use compute
shaders to construct the Hi-Z map.

6 Results

All experimental results were made using an NVIDIA
GeForce GTX 480. Timings are provided in millisec-
onds and account for all runtime overhead except for
display of the GUI widgets, text rendering, etc.. In order
to reflect a real application use case, backface culling
is always turned on to explicitly measure computations
done by hardware tessellation and costs associated with
front facing fragments.

6.1 Cull Computations

Our algorithm requires passes for drawing, determin-
ing visibility, and Hi-Z map construction. Figure 7 left
shows the runtime of the culling kernels for different

Cull Kernel Execution Time
Hi-Z Map Built Time

= Depth Buffer Bind ® Compute

40.96
mNoDisp mFull =ACON m CoN 03
10.24 |

5K 20K 80K 320K 1.28M
Number of Patches

~
n
=

°

Culltime in ms
o o o
5 b @
R & 2
Built Time in ms
o

o

1920x1080 1024x1024 512x512

Screen Resolution

Fig. 7 Left: execution times for different culling kernels with
varying patch count. Having no displacements (NoDisp), uni-
form bounding volume extension (Full), and considering ap-
proximate cone of normals (ACoN) takes about the same
amount of time, while using the true cone (CoN) is signif-
icantly more expensive. Right: Hi-Z map construction times
for different screen resolutions. Timings are split by binding
the depth buffer (depth stencil view) and running the Hi-Z
build kernel.

patch counts. Culling time scales linearly with respect
to the number of patches. The non-displaced surface
(NoDisp), the simple uniform frustum extension (Full)
and the approximate cone of normals (ACoN) kernel are
approximately the same cost, while the accurate cone
of normals bounding frustum extension kernel (CoN) is
about an order of magnitude slower. These results sug-
gest that the ACoN kernel is the best choice for dynamic
displaced surfaces, since its slightly lower effectiveness
compared to the CoN kernel (see Section 6.2), is offset
by its significantly lower cost. In fact the CoN kernel
is not suitable for animated patches since rendering the
patches is cheaper in most cases than the cull kernel ex-
ecution. The corresponding kernels using the bounds of
Munkerberg et al. [10] have about the same cost (£3%),
however, their cull-rate is always lower (see Table 1).

The performance of the Hi-Z map construction for
various screen resolutions is shown in Figure 7 right
(the depth buffer is down sampled to a size of 4 x 4 pix-
els). A large portion the Hi-Z map computation time is
consumed binding the current depth buffer. Our specu-
lation is that binding the depth buffer causes a copy op-
eration due to the driver/vendor specific internal depth
buffer representation. Further, the Hi-Z map creation is
independent of the number of patches and is therefore
a constant factor in our culling pipeline.

While our method executes both cull and Hi-Z map
construction kernels, the time required by our algo-
rithm for a scene with 80K patches was less than a
millisecond. Depending on the cull rates we expect a
pay off even at low surface evaluation costs (see Sec-
tion 6.2, 6.3).
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OOBB CAF
Full ACoN CoN Full ACoN CoN
Frog 10.5% | 12.1% | 14.0% || 14.4% | 17.0% | 18.4%
Frog? 17.1% | 25.1% | 26.4% || 22.8% | 29.4% | 30.9%
Cow 10.1% | 14.1% | 15.6% || 14.5% | 17.6% | 18.7%
Cow? 17.8% | 27.9% | 29.1% || 24.0% | 31.2% | 32.7%

Fig. 8 Test models: Killeroo and Bigguy (non-displaced;
2.9K and 1.3K patches); Monsterfrog and Cowcarcass (dis-
placed; 1.3K and 1.2K patches).

6.2 Culling within Individual Objects

Since we perform culling on a per patch basis, we can
apply our algorithm within individual models. In order
to obtain meaningful cull rate measurements, we deter-
mine average cull rates by using 1K different cameras
views respectively. Each view contains the entire object
so that no patches are view frustum culled.

Non-displaced models: The non-displaced ver-
sion of our algorithm is applied on two representative
models; Killeroo and Bigguy (see Figure 8 left). Our
algorithm achieves an average cull rate of 27.9% and
26.76% respectively compared to state-of-the-art back-
patch culling by Loop et al. [8] that culls 38.7% and
37.8% of the patches. However, our method will cull
significantly more patches with increased depth com-
plexity (see Section 6.3), since back-patch culling al-
gorithms cannot take advantage of inter object/patch
occlusions. Note that the per patch computational cost
of back-patch culling (for dynamic models) is an or-
der of magnitude higher than ours. The effectiveness
of our scheme also increaces as patch size is decreased.
For instance, if we subdivide (a 1-4 split) Killeroo and
Bigguy patches (5.8K and 11.6K patches) the cull rate
increases to 42.5% and 42.9% respectively.

Displaced models: To test our algorithm on mod-
els with displacement maps, we used the Monsterfrog
and the Cowcarcass model (see Figure 8 right). The
culling rates using different cull kernels are depicted
in Table 1. As expected, the uniform bounding shape
extension (Full) has the lowest cull rate. Taking the
approximate cone of normals into account sinigifcantly
improves the cull rate. Using the accurate cone of nor-
mals (CoN) provides an additional improvement. How-
ever, the difference between ACoN and CoN is smaller
than between Full and ACoN.

Furthermore, the camera-aligned frustum (CAF) is
more effective than the object-oriented bounding box
(OOBB) due to its better screen space bounds. Since
the cost of the respective kernels is equal, we conclude
that it is always better to use the CAF.

Note that these tests used simple models with a rel-
atively small number of patches. As shown in Table 1,
an increased patch count yields a significantly higher

Table 1 Average cullrates for displaced models; 2 denotes
the respective model after one level of subdivision (i.e., having
four times more patches). While OOBB is our method using
the bounds by Munkerberg et al. [10], CAF stands for our
camera-aligned frustum.

cull percentage. This results from better bounds on
the displacement scalars and smaller patch sizes (small
patches are more likely to be occluded).

6.3 General Culling

Culling for scenes: In Section 6.2 we considered culling
within individual objects. However, more realistic appli-
cations involve scenes with multiple objects consisting
of both triangle and patch meshes. Two simple exam-
ple scenes are shown in Figure 1 (the ACoN kernel is
used for displaced models). The first scene contains 27K
patches and we achieve cull rates of 64.2% and 30.4%
for the views shown in Figures 1(a) and 1(b) respec-
tively. Rendering is speed up by a factor of 2.1 and 1.2,
respectively (using a tess factor of 16). As expected, the
higher the depth complexity, the more patches can be
culled. Our method also benefits from triangle mesh oc-
cluders as shown in our second test scene (5.5K patches
and 156 triangles). We achieve cull rates of 70.6% and
30.5% for the views shown in Figures 1(c) and 1(d).
Render time is reduced by a factor of 2.6 and 1.3 (us-
ing a tess factor of 32). This demonstrates our algo-
rithm’s viability for game levels containing animated
characters rendered by hardware tessellation within tri-
angle mesh environments. In such a scenario per object
culling methods would not be suitable since computing
the bounding box geometry of an object on-the-fly is
costly and ineffective (looping over all control points
is required). Hierarchical approaches (e.g., clustering
patches) would be also inappropriate since hierarchy
updates create significant overhead.

Payoff: In real applications the efficiency of a culling
algorithm will determine when culling becomes benefi-
cial. This depends on patch evaluation cost, scene com-
position, and viewing position. By quantifying patch
evaluation cost, we can provide a general statement
(i.e., independent of a specific scene composition) about
the cull rate needed to amortize the cost of our method.
For this analysis we use relatively inexpensive bicubic
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Bézier patches; more expensive to evaluate patches will
benefit even more from culling.

Let RT represent the time it takes to render all
patches assuming no culling. Let RT represent the
time it takes to render all patches with tess factor set
to zero; this would be the draw time if all patches
were culled. Finally, let CT represent the time it takes
to perform the culling tests. We do not include the
cost of Hi-Z map generation since it is constant and
becomes negligible for a moderately large number of
patches. For a cull rate of z, our culling pipeline (see
Section 3) will have the following patch related costs:
a draw call that consists of rendering the non-culled
patches ((1 —z)- RT) including the culled patches with
tess factor set to zero (z - RT); plus the cull test time
(CT); plus the cost of rendering all patches with a tess
factor of zero (RT) since patch rendering is applied in
two passes. Note that the cost of newly-visible patches
is accounted for in the RT term. In order to deter-
mine the break even point (i.e., when culling becomes a
win) we compare the render time for our culling method
(LHS) to that of rendering without culling (RHS) in the
following equation:

(1—2)-RT +x-RTo+ CT + RTy = RT

Solving for x provides the break even point:

x_R%+CT
" RT — RT,

Since we can measure RT at a given tess factor as
well as RTy, and CT for bicubic patches, we can cre-
ate a graph for the culling break even points (see Fig-
ure 9 left). The graph plots the resulting cull rate z
as a function of tess factor using the ACoN cull ker-
nel. Graphs for the NoDisp and Full kernel are almost
equal to that of ACoN. The CoN kernel, however, does
not pay off until a tess factor of 6 with a cull rate of
over 60%. Since the cull rate of CoN is only slightly
better, but its costs are an order of magnitude higher
than ACoN, the ACoN kernels generally provides better
performance. An application for CoN would be static
(non-animated) objects where the cone of normals can
be precomputed.

Temporal Coherence: In order to measure the ef-
fects of reduced temporal coherence on our algorithm,
we rotate the Bigguy model around its z-axis using dif-
ferent speeds of rotation (see Figure 9 right). We choose
rotations for this test as it is worst-case in terms of vio-
lating temporal visibility coherence. Even for large view
point changes, the cull rate is only slightly affected. In
our example the cull rate drops from 25.5% (no move-
ment) to 20.4% (rotation at a speed of 10° per frame).
While we expect extreme scene motion to reduce cull

Cull Break Even Point (ACoN) Temporal Coherence

Required Cullrate
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Cull Rate
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Fig. 9 Left: required cull rates to make culling beneficial for
different tess factors using the ACoN kernel. Culling becomes
a win above a tess factor of 4 at a cull rate of 35.8%. Right: av-
erage cull rates using the Bigguy model for different speeds of
rotation around the z-axis. Even for a large temporal change,
our algorithm’s cull rate is only slightly affected.

rates, we note that due to the conservative nature of
our algorithm, no visible patches will be missed.

Adaptive tessellation: An important advantage
of the hardware tessellation pipeline is the ability to
assign tess factors to individual patches dynamically.
While this can reduce tessellation costs significantly,
an additional constant amount of per patch computa-
tion is required to determine these tess factors. Within
the context of our culling method, this means we can
avoid tess factor computations for culled patches. How-
ever, since adaptive tessellation tends to assign smaller
tess factors to potentially culled patches, there is less
room for saving tessellation costs. In order to evalu-
ate the culling efficiency of our algorithm when using
adaptive tessellation we use a simple camera distance
based tess factor estimate (similar to the DetailTessel-
lation11 sample of the DirectX SDK). For the scene
and camera setup of Figure 1(a) we achieve roughly
the same visual quality at render times of 3.8 ms (w/o
culling) and 2.6 ms (w/ culling; ACoN), respectively.
Thus, our method reduces render time by about 31.6%.
Please note that more sophisticated adaptive tess fac-
tor estimates (e.g., curvature based) would favor our
algorithm even more due to the extra tess factor com-
putation costs. For the same setup using the view of
Figure 1(b), where we have only intra-object occlusion
(cull rate of 30.4%), our culling method does not pay
off; i.e., about 9% slower than w/o culling. In order to
avoid such a situation where our method’s overhead is
not amortized by savings, we suggest disabling culling
for selected models. This decision can be made for each
model independently. For instance, one could compute
a single adaptive tess factor per model (e.g., model cen-
troid to eye distance); if that tess factor is less than a
particular threshold (see Figure 9 left for payoff), do
not apply culling. Per patch tess factors can be still
assigned afterwards to non-culled patches.

Another option for adaptive tessellation is to com-
pute a uniform tess factor for each model at runtime.
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That would allow balancing costs and gains for each
model individually, and provide a decision whether or
not to apply culling.

7 Conclusion and Future Work

We have presented a simple, yet effective algorithm for
culling occluded bicubic patches for hardware tessella-
tion. We used bicubic Bézier patches due to their sim-
plicity and popularity; however, our method can be
applied with different types of patches such as PN-
Triangles [16] or Gregory patches [7]. All that we re-
quire are methods to bound patch geometry, and first
partial derivatives (to determine an approximate cone
of normals).

Our results show that our culling method performs
well on current hardware involving only minimal over-
head. Thus, culling is effective even for simple scenes
(e.g., single objects) and small tess factors (see Fig-
ure 9). In addition our patch-based culling algorithm
can easily be combined with previous per object oc-
clusion culling methods that are applied on triangle
meshes. We believe that our method is ideally suited
for real-time applications that leverage the advantages
of hardware tessellation.
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