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Figure 1: Photos of augmenting our Augustus statue (see Figure 2) with multiple projectors. First, an animated texture is projected onto the
object. Second, the statue appears to be made of glass with a skull behind the surface and third, the object appears as a perfect mirror using
an environment map. On the right, the contribution of the two projectors is visualized. Projector 1 is green, projector 2 is blue (see Figure 2).

Abstract

Using projection mapping enables us to bring virtual worlds into
shared physical spaces. In this paper, we present a novel, adaptable
and real-time projection mapping system, which supports multi-
ple projectors and high quality rendering of dynamic content on
surfaces of complex geometrical shape. Our system allows for
smooth blending across multiple projectors using a new optimiza-
tion framework that simulates the diffuse direct light transport of
the physical world to continuously adapt the color output of each
projector pixel. We present a real-time solution to this optimization
problem using off-the-shelf graphics hardware, depth cameras and
projectors. Our approach enables us to move projectors, depth cam-
era or objects while maintaining the correct illumination, in real-
time, without the need for markers on the object. It also allows
for projectors to be removed or dynamically added, and provides
compelling results with only commodity hardware.
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1 Introduction

Augmenting physical objects like buildings or statues using projec-
tors is frequently used in theme parks, museums and art installa-
tions. More recently, systems such as IllumiRoom and RoomAlive
have brought projection mapping into the living room and the con-
sumer domain [Jones et al. 2013; Jones et al. 2014]. This notion of
spatial augmented reality (SAR) [Bimber and Raskar 2005], aug-
ments arbitrary real-world objects with virtual content through pro-
jection mapping, and provides an alternative experience, which is
more shared than head-worn VR systems.

To increase the resolution and surface area covered by SAR sys-
tems, multiple overlapping projectors need to be used. However, il-
luminating an arbitrary surface with complex geometry using mul-
tiple projectors obviously introduces visible errors in areas where
the projectors overlap.

Figure 2: Our primary setup: Projector 1 projects from the chin
upwards, projector 2 from the temple downwards. In the overlap-
ping regions both projectors can illuminate the statue.
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Furthermore, many existing projection systems require a static (i.e.
non-moving) setup. This is constraining in many SAR scenarios
where the projector, camera or target object may intentionally or
unintentionally move. For example, imagine a user accidentally
bumping into these objects, or novel interactive scenarios where
rendered content needs to be projected either on a moving surface
(e.g. [Bandyopadhyay et al. 2001]) or with a moving projector (e.g.
[Molyneaux et al. 2012]).

In this paper we introduce a novel, adaptable, and real-time pro-
jection mapping system that supports multiple projectors and high
quality rendering of dynamic content on white Lambertian sur-
faces of complex geometrical shape. Our system allows for
smooth blending across multiple projectors using a new optimiza-
tion framework that simulates the diffuse direct light transport of
the physical world. This allows to continuously adapt the color out-
put of each projector pixel such that the joint illumination on the
target geometry equals the desired color. Our system considers the
incident angle, distance and footprint size of all pixels from differ-
ent projectors.

We solve this problem on the GPU, for each projected pixel in real-
time, using only an additional off-the-shelf depth camera to observe
the geometry and appearance. With one depth camera calibrated to
the projector setup, the object can be moved freely while maintain-
ing correct illumination in real-time, without the need for markers
on the object. To gain the possibility to also move the projectors,
every moving projector needs its own depth camera for tracking. It
also allows for projectors to be removed or dynamically added, and
provides compelling SAR results with only commodity hardware.

The main contributions of our paper are:

• A novel projection mapping system that uses commodity
hardware, which for the first time allows multiple projections
onto arbitrarily shaped surfaces, where the projectors and ob-
jects can all move, and no markers are required.

• A novel optimization approach that adapts the contribution of
multiple projectors in real-time by modeling the diffuse direct
light transport in the scene.

• A real-time demonstration of the capabilities of our system
with compelling SAR scenarios.

2 Previous Work

There has been extensive work on enabling augmented reality sce-
narios using projection mapping (for an extensive review see [Bim-
ber and Raskar 2005; Bimber et al. 2008]). Whilst recent work has
captured much press attention [Jones et al. 2014; Jones et al. 2013],
there has been much work over the last two decades, stemming from
the seminal ‘Office of the Future’ project [Raskar et al. 1998].

Since this early work, which explored the use of large and curved
projection surfaces that could be semi-automatically calibrated,
there has been much work on projection systems, calibration tech-
niques, and camera-projector systems. Systems have looked at the
problem of projecting and interacting across multiple flat surfaces
[Pinhanez 2001; Wilson and Benko 2010], even using a moving
handheld projector [Cao and Balakrishnan 2006; Harrison et al.
2011]. One specific problem explored is the blending of multi-
ple projections on flat or pseudo-flat surfaces [Brown et al. 2005;
Majumder and Brown 2007]. These systems borrow from the large
literature on image-based rendering and blending techniques (see
[Shum et al. 2008] for a review). However, these systems have not
explored complex geometry or moving surfaces.

More recently, with the advent of real-time depth cameras, projec-
tor systems have begun to deal with more complex geometries. Il-
lumiRoom [Jones et al. 2013] explored projecting around the pe-
riphery of a television screen, and RoomAlive [Jones et al. 2014]
explores multiple projections within an entire room. However, nei-
ther of these systems deal with moving projector/cameras or mov-
ing scenes. One example of a moving handheld projector system
is [Molyneaux et al. 2012], which is used to render content onto
real-world geometry of arbitrary shape, captured using the Kinect-
Fusion system [Izadi et al. 2011; Newcombe et al. 2011]. However,
this system did not scale to moving objects, nor multiple projectors.

Other work has focused on the problem of correcting the projected
image due to inherent color and visual artifacts using various ra-
diometric compensation techniques [Grundhöfer and Bimber 2008;
Grundhöfer 2013], or by modeling the inverse light transport of the
projector [Wetzstein et al. 2007]. Some projector systems com-
pensate in real-time for color changes on dynamic projection sur-
faces [Fujii et al. 2005]. Other systems compensate for environment
lighting changes [Bimber et al. 2005a] or even the material proper-
ties of the scene [Bimber et al. 2005b; Law et al. 2011]. These sys-
tems however often do not deal with complex geometries or support
movement of the surface or projector/camera system.

Shader Lamps [Raskar et al. 2001] demonstrated compelling re-
sults of using projection onto arbitrary shaped white Lambertian
surfaces. This included various rendering and animation effects,
and support for multiple projectors. However, a time-consuming
static calibration technique was performed by manually moving a
cross hair in the projector view to highlight pixels that illuminate
known object points. In follow-up work, [Lee et al. 2004] used
fiber optic sensors embedded inside the object to localize a moving
object, but not in real-time. Bandyopadhyay et al. [2001] and Lee
et al. [2008] demonstrated projecting on a moving object, but re-
quired infrared markers and/or magnetic sensors on the object, and
only a small working volume. DisplayObjects [Akaoka et al. 2010]
also used a marker-based tracking system, to track the display ob-
jects. In these systems the projector and sensor system are assumed
to remain static. Resch et al. [2014] supports a moving projector-
camera system, but does not scale to multiple projectors modeling
the light transport to ensure correct per-pixel projection rendering.

Sueishi et al. [2015] present a projection mapping system that
is able to dynamically project onto moving objects. They use a
1000fps camera and galvanometer mirrors to track and illuminate
the object with a single projector. The resulting tracking is ex-
tremely fast and impressive results are achieved. Note that this
tracking approach is orthogonal to our contribution and could be
used to significantly reduce the latency of our system.

Another area utilizing projection mapping is CAD. Konieczny et al.
[2006] use multiple projectors for material simulation. However,
their multi-projector handling comes down to using different pro-
jectors for fore- and background. Sheng et al. [2009] use multiple
projectors for simulating sunlight on architectural models. Here the
scene is static as well and could greatly benefit from the dynamics
that our system introduces.

Our work extends the growing body of GPU-based optimization
literature, which has gained interest in the field of 3D reconstruc-
tion and geometry processing, since it is a crucial prerequisite for
interactive real-time applications. In the KinectFusion approach
[Newcombe et al. 2011; Izadi et al. 2011], the GPU is exploited to
build the system required for real-time 6DoF camera tracking and
reconstruction. In Weber et al. [2013], efficient matrix layouts and
approaches for linear optimization on GPUs are evaluated in the
context of finite element simulation. Zollhöfer et al. [2014] extends
this to a non-linear Gauss-Newton optimization framework that is
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Figure 3: Our pipeline for augmenting real-world objects with N projectors.

used for real-time non-rigid surface registration. This framework
has been adapted [Wu et al. 2014] to a GPU-based Gauss-Newton
solver that exploits fast shared memory based on a Schwarz alter-
nating procedure for real-time shading based refinement of com-
modity depth maps. Kaspar and Deng [2015] use a GPU optimizer
to model constrained meshes in real-time. They use one thread per
constraint and one kernel per constraint type. In contrast to these
previous approaches, we propose a GPU framework for bounded
non-linear optimization under given in-equality constraints.

3 System Overview

When illuminating real-world, non-convex objects using a single
projector, self-shadowing will break the immersion for spectators.
Therefore, we need a setup consisting of multiple projectors (Fig-
ure 2) where one can fill regions shadowed from the other. In Fig-
ure 4a two projectors illuminate an object with a pure white image.
While shadows are filled in, it is evident that the surface still shows
shading mainly due to Lambertian attenuation. Taking Lambertian
and distance effects into account, we can produce a uniformly lit
surface (see Figure 4b). This gives us a blank canvas to generate
arbitrary appearances (see Figure 1) without interference from real-
world shading. We describe this in more detail in Section 4.2.

For this to work, our system requires knowledge of the projectors’
and the illuminated objects’ positions. Since we support fully dy-
namic setups where projectors and objects are allowed to move,
real-time tracking is needed. For this tracking and the following
pixel luminance correction, we need a high quality 3D scan of the
target geometry. Furthermore, for high quality projection mapping
and the correct calculation of complex overlap scenarios between
projectors, we need highly accurate intrinsic and extrinsic parame-
ters of all hardware components in our setup described in the fol-
lowing paragraphs.

Our software-system is based on the pipeline depicted in Figure 3.
The RGB-D camera provides our system with rigid tracking data.
To compensate for latencies, motion prediction is applied before
the transformation is sent to the rendering. The renderer then com-

(a) (b)

Figure 4: (a) Our statue illuminated with plain white light from two
projectors. (b) The statue illuminated from both projectors when
compensating for Lambertian attenuation, distance and overlap.

putes the desired surface colors of the object that will be used in our
solver stage to compute the pixel colors for each projector.

Hardware Setup Our hardware setup consists of a standard desk-
top workstation with an Intel Core i7 4771 (3.5GHz),
32GB of RAM and two graphics cards. The first graphics card,
an NVidia GeForce 760, performs the tracking detailed in the
next paragraph. The second graphics card, an NVidia GeForce
980, is used for rendering and solving the non-linear multi-
projection system described in Section 4.

As projectors we use two NEC NP-P451WG and for one demo
two Optoma ML750e LED devices with a resolution of 1280 by
800 pixels. For object tracking ASUS Xtion PRO Live depth
sensors are utilized. For the projectors’ intrinsic calibration, we use
a Logitech C920 HD camera.

An exemplary setup with a single depth camera, two stationary pro-
jectors and a target object (our Augustus statue) is depicted in Fig-
ure 2.

Camera Calibration In order to calibrate the intrinsics of our
projectors we need a calibrated color camera. We rely on the
widely used OpenCV implementation of the calibration procedure
presented by Zhang [2000]. This algorithm delivers intrinsic pa-
rameters and distortion coefficients for our color camera. Intrinsics
for the depth camera are provided by the sensors’ manufacturers.

Projector Calibration The next step towards getting a com-
pletely calibrated system is the intrinsic calibration of the projec-
tors. To get such a calibration, we project sequences of points onto
different planes (tracked using multiple optical markers) that are
captured by the color camera. The color camera is only used for
this calibration step and is not a part of our on-line system.
An additional calibration step required for multi-projector setups is
color calibration. All projectors we used, showed noticeable differ-
ences in color rendering. We use an i1 Display Pro colorime-
ter to obtain color profiles for all projectors.

Extrinsic Calibration The last step we need is an extrinsic cali-
bration between the depth camera and the projectors. We use a 3D-
Calibration object with a known pattern that can be tracked with
our object tracker. To find correspondences between the depth im-
age and a projector, we identify pixels illuminating known points on
the surface of the calibration object. This is done once, subsequent
tracking does not rely on markers.

Object Tracking We track the projectors 6DoF transform relative
to the object based on the captured depth data of the input sensor
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Figure 5: Left: The different types of rays contributing to coloring
the surface. Green regions are illuminated by only one projector,
blue regions by both. The red colored regions are occluded by the
target geometry from one of the projectors. Right: The light con-
tribution of a 2-projector case (projector 1 green, projector 2 blue,
see Figure 2). The blending between projectors in overlap regions
adapts to the surface shape.

and our 3D scene model. To this end, we employ a projective iter-
ated closest point strategy which is based on a point-to-plane met-
ric. Similar to previous work on online 3D reconstruction [Izadi
et al. 2011; Nießner et al. 2013; Newcombe et al. 2011], we it-
eratively linearize the problem around the last estimate and build
the corresponding linear system on the GPU. The resulting small
6× 6-system is efficiently solved on the CPU using Singular Value
Decomposition.

Motion Prediction While our system runs at real-time frame-
rates, the object tracking suffers from delays introduced by the
on-chip processing of the RGB-D camera and the round trip time
through our computation pipeline for tracking. This is noticeable
as a lag between user interaction and corresponding changes in our
tracking matrices. Since this effect impairs the immersion for the
user, motion prediction is implemented in our system. We use a
statistically based predictor to fit a spline into the past N frames
that is extrapolated to predict the tracking trajectory. An additional
weighted low-pass filter over new frames improves the robustness
against outliers.

4 Dynamic Multi-Projection Optimization

Augmenting a dynamically moving object using multiple, poten-
tially moving, projectors imposes a hard global optimization prob-
lem in the unknown per-pixel color values of the projectors that
has to be solved under a tight real-time constraint. This global op-
timization problem is defined by finding the correct output color
p = [pki,j ]

> = [ph]> for every projector k at each pixel position
(i, j) that generates the desired color values l = [lki,j ]

> = [lh]> for
every surface point xh. To simplify notation, we integrate indices
i, j, k to a single index h. Therefore, xh ist the surface point hit by
the central ray of pixel h.

4.1 Ray – Surface Interaction

In order to compute the light contribution, we need to take several
physically motivated effects into account.

(a) (b) (c)

Figure 6: (a) The result of a geometry aware illumination (Phong
shading) from a single projector. (b) The shadow on the cheek is lit
by a second projector. (c) shows the contribution of projector 2 to
this multi-projection by manually occluding projector 1.

Interaction of Projector Rays on the Surface The first, and
maybe most important point is the interaction of projector rays with
the surface of an object. Figure 5a shows different ray interaction
types on the surface where . . .

. . . only one projector hits (green, single-projector ray).

. . . at least one ray is occluded by the target geometry while oth-
ers hit (red, shadowed multi-projector ray).

. . . rays from multiple projectors hit (blue, multi-projector ray).

An immediate advantage of multiple projectors is additionally cov-
ered space. As motivated in Section 3, we also illuminate regions
not reachable by a single projector (red/green regions). In addi-
tion we are able to favor projector rays with a better incident angle
(smaller footprint) in the blue regions.
Figure 6 shows a close up of the red area next to the nose (with
Phong shading). Using only projector 2 (see Figure 2), the nose
casts a shadow on the cheek (Figure 6a). With the addition of pro-
jector 1 and our algorithm, this shadow can be filled seamlessly (see
Figure 6b). In Figure 6c, the contribution of projector 2 to Figure 6b
is captured. Note the dimming of the projector on the statue’s right
cheek. This is due to projector 1 illuminating these parts at a better
incident angle. The blending (visible in Figure 6b) is constantly cal-
culated, allowing us to move objects while still keeping a uniform
lighting.

The multi-projector rays (blue in Figure 5a) induce the globality
into our system. This is illustrated in Figure 7 for an exemplary
setup with 2 projectors. In the first case, both projectors have a
similar location relative to a surface patch and every pixel of the
projectors illuminates approximately the same spatial surface ex-
tent. Therefore, depending on the shift in the pixel grid, each pixel
of the green projector interacts with at most 4 other pixels of the
blue projector (see Figure 7a). In contrast, if the orientation of both
projectors differs, the locality in the pixel-to-pixel mapping is lost
and the problem has a global nature (see Figure 7b). While the
projection of the pixel grid from the green projector has an equal
spacing on the surface, the pixels of the blue projector are stretched
out due to perspective foreshortening. As a result, the projected area
of certain pixels is much larger, thus associating the corresponding
pixel with more pixels of the green projector.

Quality of Rays As another important contribution to our system,
a balancing between rays (based on their quality) is introduced. In
general, rays hitting the surface at a more perpendicular angle will
result in a smaller footprint on the surface. This is preferable over
rays hitting at smaller angles. The smaller the footprint, the more
local the influence of each ray on the actual surface is and the more
detailled the projected texture can be. Figure 5b depicts the contri-
bution to the final surface color for each projector. To our knowl-
edge, all other approaches blend projectors based on the location of
a pixel in projector space. Our method blends using properties of
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Figure 7: Two configurations of projectors. (a) Both projectors
generate similar pixel footprints on the surface. (b) The blue pro-
jector projects from a more level point, generating larger pixel foot-
prints. (c) Shows why a reserve for correcting Lambertian and dis-
tance effects is required.

the actual surface geometry, dynamically taking the orientation of
the projector to the geometry into account.

Physical Properties of Light The most influential physical
property to our system is the Lambertian cosine law. As described
in Section 3, we aim to light the surface in a way that viewers will
not notice the shading generated by the projectors. To achieve this
we need to set a maximum white intensity that is below 1 (the maxi-
mum projector intensity). This gives us a reserve to increase a ray’s
intensity to compensate for the previously mentioned Lambertian
attenuation. Figure 7c shows this effect for two exemplary rays.
Here the maximum white intensity is set to 0.7. We also use this
reserve to compensate the attenuation due to increasing distance to
the object.

4.2 Objective Function

In this Section, we present an objective function that transparently
handles dynamic scenes, multiple projectors and optimization at
real-time rates. The problem of finding ideal per-pixel color val-
ues p = [pki,j ]

> = [ph]> for all projectors is posed as a variational
non-linear bounded optimization problem in the unknown per-pixel
color values:

p∗ = argmin
p

s.t. ph∈[0,1]

Etotal(p)

Our re-coloring objective consists of four main parts:

Etotal(p) = wlightElight(p) + wregEreg(p) +

+ wbalanceEbalance(p) + wboundEbound(p)

The fitting term Elight models the diffuse direct light transport in
the scene and allows us to specify the re-coloring for an object,
Ereg enforces a locally coherent brightness, Ebalance balances the
projectors against each other andEbound(p) is a soft box-constraint
that keeps the parameters in the [0, 1] range of real-world projec-
tors. Note, while we use a parameter re-projection strategy for the
optimization of the energy, these soft constraints help to achieve
plausible results. To balance different parts of our objective func-
tion we use weights w∗. Our method turned out to be quite robust
to the choice of parameters. Therefore, we set all weights w to 1.
In the following, we explain the individual parts of our novel ob-
jective function and show how to compute the best solution of the
associated optimization problem at real-time rates.
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Figure 8: Example configurations of two projectors with their cor-
responding light-transport matrices. (a) The projected pixels have
a similar spacing on the surface. Every re-projection hits another
pixel in the other projector. (b) Projector 1 is more level. The first
pixel of projector 1 no longer hits the surface, the row in the ma-
trix remains empty. The second ray hits the surface, but the re-
projection misses projector 2. The corresponding row only has a di-
agonal entry. Multiple surface points of projector 2 are re-projected
into the same pixel of projector 1, resulting in three green vertical
matrix entries.

Diffuse Direct Light-Transport The first part of our objective
function allows to specify an arbitrary re-coloring of the object. To
this end, it takes the physical transport of direct light in the real-
world scene into account:

Elight(p) = ||Tp− l||22
Here, T is the scene’s direct light transport operator and l is a vector
of desired surface color values. || . ||2 denotes the `2-Norm. There-
fore, T encodes the physical properties of the surface and takes the
relative configuration of the projectors as well as of the object into
account, mapping pixel values pi to surface color values li. Our op-
erator T only considers direct illumination from the projectors, but
no indirect light transport on the object. Note that T could easily
be extended in this direction, however the matrix structure would
become more complicated and solving the system more expensive.
Fig. 8 (top row) illustrates the structure of T for two simple exam-
ple configurations. The corresponding matrix structure is shown in
the bottom row. Every pixel pi is projected onto the surface and
corresponds to a row in the matrix T. If the projection misses the
target object, the row is filled with zeros. Otherwise, the hit surface
point is re-projected into the image planes of all projectors. Those
re-projections pj are added as a non-zero value into their corre-
sponding column j. I.e. the diagonal entries encode, that a pixel
always sees its own reprojection. Every re-projection can only hit
one pixel pj of every other projector, thus the number of entries
per row is limited to the number of projectors in the setup. In the
second example, see Fig. 8b, the blue projector misses the object
leading to a zero row. Multiple pixels of the green projector map
to the same pixel of the blue projector resulting in the three vertical
green entries in the matrix. Due to this re-projection strategy our
system is also indifferent to projectors with different resolutions.
To achieve real-time performance, we have to exploit the sparsity
of T in the optimization.



The entries of T, map the brightness pi of a projected pixel to the
corresponding reflected intensity at a surface point. Our mapping
is based on a Lambertian reflectance assumption coupled with a
distance based attenuation term:

tij =

〈
ni, ii

〉
d2
i

· vij

Here, ni is the normalized surface normal at the corresponding sur-
face point and ii is the normalized negative incident light direction.
di denotes the distance of the surface point to the projector. In cases
where the hit point of ray i is within the surface footprint of pixel
j’s projection, the visibility vij is 1. In all other cases it is 0.

Local Coherence We enforce local coherence of the per-pixel
brightness values of the projectors to regularize the problem. To
this end, we add a Laplacian smoothness constraint to our objective
function:

Ereg(p) =

N∑
i=1

∑
j∈Ni

||pi − pj ||2

Ni denotes the 1-neighborhood of the i-th pixel and N the total
number of pixels. This constraint is especially important in regions
where the ray configuration changes (i.e. red to blue in Figure 5a).
In this area, sub-pixel calibration errors would become visible. We
take special care that smoothing is not applied across depth discon-
tinuities.

Brightness Balance Each surface point can potentially be illu-
minated by multiple projectors (see Figure 5a). Ebalance tries to
control the contribution of the different projectors such that the best
re-coloring result is obtained (see Figure 5b). To this end, we assess
the quality of the footprint a certain pixel will generate:

Ebalance(p) =

N∑
i=1

∑
r∈Ri

Λ(pi, pr)2

WhereRi is the set of all re-projections of pixel pi.

The ray quality decider Λ is defined by:

Λ(pi, pr) = λsmooth(pi) · pi − λsmooth(pr) · pr

Since a linear blending function is numerically unstable at the
boundaries, our blending is based on the following continuous
smooth step function:

λsmooth(pi) = 3 · λlin(pi)
2 − 2 · λlin(pi)

3

The decider takes into account that rays with a smaller footprint
lead to sharper projections and therefore better re-coloring results.
In our setup, we define λlin(pi) based on the angle between the
surface normal and the negative incident ray direction:

λlin(pi) =
1

|Ri| − 1
·

(
∑

r∈Ri

〈
nr, ir

〉
)−

〈
ni, ii

〉∑
r∈Ri

〈
nr, ir

〉
For two projectors this comes down to:

λlin(pi) =

〈
nj , ij

〉〈
ni, ii

〉
+
〈
nj , ij

〉
Where j is the re-projection index of pixel pi into the other projec-
tor.

(a) (b)

Figure 9: (a) Shows a multi-projection ignoring gamma correc-
tion. The sum of projected light appears too dark. (b) This effect
disappears if correct gamma correction is included.

Boundary Constraints In theory we would need an infinite
amount of light to compensate distance and Lambertian effects for
extreme cases. Since Elight reflects this fact, the solver will out-
put such extreme values. The controllable brightness range of real
world projectors, however is limited to a certain range. Thus we
need to constrain our per-pixel color values to [0, 1]:

Ebound(p) =
∑
i

Φ(pi)
2

To this end, we implement a soft box-constraint on the variables
based on the following function:

Φ(pi) = α · (pi − 0.5)p

Experiments showed that α = 1.2 and p = 10 leads to the best
results, using a steeper function leads to numerical instabilities due
to high derivatives at 0 and 1. On top of this soft box-constraint, we
also use a parameter re-projection strategy in the optimization.

4.3 Linear Color Space

The objective of our algorithm is to generate correct (in our case
rendered) colors on the surface of a target object. This is achieved
by optimizing the contribution of pixel color intensities of the pro-
jected images using our objective function. Our solver assumes that
colors behave linear when calculating the blending of two projec-
tors (compare to Figure 5b). Since colors generated by our render-
ing are gamma corrected by the system and the projectors before
they are projected, we need to compensate by applying an inverse
gamma correction.

Figure 9a shows the result of an uncorrected setup. The desired
surface color is set to a gray value of 0.7. Due to the non-linearity of
the color space, the regions that are illuminated by both projectors
appear too dark. In Figure 9b the gamma corrections are correctly
applied and the surface appears uniformly lit.

4.4 Luminance Optimization

Solving our optimization problem for all color channels indepen-
dently produces a large problem size. However, changes are only
noticeable in the luminance of the optimized colors. We therefore
adapt our objective function to compute a luminance such that the
surface is lit with a constant brightness. In Section 4.1 we discussed
the reserve we leave for compensation of Lambertian and distance
effects. We also apply this to the luminance, setting the maximum
value to 0.7, leaving a reserve of 0.3. This results in a new Energy
Elight for our objective function:

Elight(p) = ||Tp− (0.7, 0.7, ...)>)||22

Due to this change, p now no longer denotes the pixel color, but
the pixel’s luminance weight. The actual pixel color is computed
by multiplying the luminance weights pi with the rendered target
colors li.



5 Fast and Robust Bounded Optimization

Our proposed seamless re-projection objective gives rise to a non-
linear bounded least squares problem in the unknown projected lu-
minance weights p. Interactive re-projection applications, e.g. re-
texturing of rigidly moving objects, require the optimization to op-
erate at real-time frame-rates. To this end, we propose a data-
parallel optimization framework that leverages the horsepower of
modern GPUs for the fast and robust solution of bounded least-
squares problems. Our approach (see Algorithm 1) is a hybrid be-
tween a parallel Gauss-Newton (GN) solver and a fast and efficient
parameter projection strategy. In contrast to the approach presented
by Zollhöfer et al. [2014] for non-rigid surface tracking, our core
solver directly supports inequality constraints. This is highly im-
portant in the context of our projector setup, since each luminance
value has to be constrained to a physically re-producible subspace
of RN .

5.1 Gauss-Newton and PCG Solver

Algorithm 1 Non-Linear Bounded Least-Squares Optimizer

Compute Foreground Masks();
Project To Other Views();
Check For Occlusions();

p0 = Initialize From Last Frame();
for k = 1 . . .K do

Compute RHS And Preconditioner(pk−1);

∆p = 0;
for m = 1 . . .M do

∆p += PCG Step(pk−1);
end for

pk = Reproject To Range(pk−1 + ∆p);
end for

The previously proposed re-projection objective is a highly non-
linear bounded least squares problem. Without the inequality con-
straints, the problem is a non-linear least squares problem in the
unknown vector of luminance values p:

p∗ = argmin
p

E(p)

Therefore, it can be rewritten in the following canonical form by
re-naming all R scalar residuals consistently:

E(p) =

R∑
i=0

ri(p)2

The notation can be further simplified by reformulating the objec-
tive in terms of its associated residual vector field F : RN → RR

that stacks all scalar residuals:

E(p) = ||F(p)||22, F(p) = [ . . . , ri(p), . . . ]T

This minimization problem can be readily approached using the
Gauss-Newton algorithm. To this end, we linearize the vector field
around the last solution pk−1 using a first order Taylor expansion:

F(pk) = F(pk−1) + J(pk−1) ·∆p

with ∆p = pk − pk−1 being the linear parameter update and J
denoting the Jacobian of F. This gives rise to the following over-
constrained linear least squares problem:

∆p∗ = argmin
∆p

||F(pk−1) + J(pk−1) ·∆p||22

The optimal linear updates ∆p∗ are computed by solving the as-
sociated normal equations using an iterative and fast GPU-based
Preconditioned Conjugate Gradient (PCG) solver:

J(pk−1)TJ(pk−1) ·∆p = −J(pk−1)TF(pk−1)

Note, that an iterative solution strategy is especially advantageous
for the GN algorithm, since the system matrix J(pk−1)TJ(pk−1)
changes in each non-linear iteration due to its dependence on the
old parameter estimate pk−1, see Algorithm 1. We solve for a se-
quence of solutions pk, starting from a good initial estimate p0,
until convergence.

The Gauss-Newton approach is a derivative of Newton’s method
for minimizing non-linear least squares problems that does not re-
quire explicit second order derivatives, but still exhibits a super-
linear convergence rate. Therefore, JTJ can be seen as a first order
approximation to the Hessian H of F. To further speed up conver-
gence, we use Jacobi/diagonal preconditioning.

Structure of the Jacobian Matrix As we discussed in Sec-
tion 4.2, the induced Jacobian J turns out to be sparse. To allow
for real-time performance of the solver, we have to exploit this in-
herent sparsity in all computation steps. The sparsity of the Jaco-
bian enables on-the-fly computation of the non-zero entries in the
matrix-vector products of the PCG step. Parameters are initialized
based on the previous frame.

Parameter Projection Since we are dealing with a non-linear
bounded optimization problem, we have to keep the parameters in
a reasonable range, such that they fulfill the given inequality con-
straints. To this end, we augment the GN procedure with a fast and
efficient parameter projection strategy, see Algorithm 1. Therefore,
we interleave each non-linear GN step with a projection step, bring-
ing the parameters to their valid range.

Implementation Details Since the re-projection pattern is highly
non-regular, we can not easily exploit shared memory as done in
Wu et al. [2014]. We implemented our data-parallel bounded op-
timization strategy using CUDA 7.0. The cachable parts of the
non-zero entries of the Jacobian are stored in a quasi Compressed
Row Storage (CRS) matrix format with a fixed maximal row length.
For this, we know the maximum of Nrow non-zero entries per row,
which equals the number of projectors. To aid a faster evaluation of
the normal equations, we precompute some data that remains con-
stant over all iterations. The multiplication with the system matrix
in the PCG Step is performed using two kernel calls: one for JT

and one for J, respectively. This reduces fill-in and prevents the ex-
pansive O(n3) system matrix computation step. We use a parallel-
prefix sum on a foreground mask to compute linearized thread in-
dices. One thread is allocated per variable. In contrast to Zollhöfer
et al. [2014] we use 3 scans: 1 scan on block level 512 blocks
and two scans on warp level to compute optimal step-sizes. This
allows us to support up to 2M variables which is enough for the
two projected HD images, i.e. 2× (1280× 800) ≈ 2M variables.
It is easily possible to extend this to a larger number of projectors.
Compared to Weber et al. [2013] and Zollhöfer et al. [2014], we
also do not redundantly compute the step-sizes, this turned out to
be beneficial on the newest graphics hardware.

6 Results

In the following section we will detail some example applications
based on our real-time light transport optimizer. Please refer to the
accompanying video to see the setup in action.



(a) (b)

Figure 10: (a) The setup used for live environment mapping. A
hemispherical mirror is captured by a color camera. (b) A photo-
graph of the resulting projection onto the surface of the Augustus
statue. The reflection of the tennis ball appears on the right cheek.

Live Environment Map Having the possibility to completely re-
verse real-world shading on an illuminated object, we can change
the appearance of the plaster statue seen in Figure 2. Our Live
Environment Mapping captures a mirror half-sphere with a color
camera. This live image is used as an environment map in our ren-
dering, creating the illusion of a metallic surface (see Figure 10).
The video shows that our system is capable of providing real-time
updates without having an adverse effect on the frame-rate.

Viewer Tracking We integrated viewer tracking into our system
to enable effects that are based on the spectator’s position. This
allows us to show correct specular lighting and proper parallax ef-
fects. The result of this can be seen in Figure 14. A virtual skull
is rendered inside the statue that appears to be made of glass. The
rendering adapts to the position of the spectator.

So far we have only showed our Augustus statue to demonstrate
our system. This is due to the very high quality 3D-scan we have
of this object. However, our algorithm works for arbitrary objects.
Figures 14c and 11 show two additional demos of different objects.

N-Dynamic Shader-Lamps Our online system for solving multi-
projection setups enables us to move the target object. Beyond this
we also have the possibility to move the projection systems inde-
pendently. Therefore, every projector is assigned to its own RGB-
D camera for tracking purposes (see Figure 14d). Now, the user is
able to take a projector, move it around and augment the regions
he is interested in. As the system is solved globally, every device
as well as the target object can be moved independently at the same
time. Whenever a surface region is seen by more than one projector,
our system takes care of the correct blending.

Since our tracking relies on active stereo RGB-D cameras, the use
of two cameras in the same setup has a negative impact on tracking
accuracy. However, only in very parallel orientations of cameras
the tracking was lost in our experiments. In general the tracking
showed only a slight degradation.

Performance We measured the performance of our system using
the Augustus statue with about 300k faces. The tracking is per-
formed using DirectX compute shaders. The rendering is based
on the NVidia Optix 3.8 framework, which gives us more
flexibility for shooting shadow rays and the glass effects in our de-
mos. Our system needs 14ms to compute the output colors used
to illuminate the objects. It would easily be possible to switch to
a forward rendering pipeline like DirectX or OpenGL in the fu-
ture. This would give a substantial performance improvement. The
solver runs on CUDA 7.0 and is set to 5 GN and 5 PCG iterations

(a) (b) (c)

Figure 11: This scene shows holographic rendering on a physi-
cal plane. (a) and (b) show the contribution of each projector to
produce the final image (c).
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Figure 12: Convergence (squared residuals) of our solver for the
statue and board example on a logarithmic scale. The first two
lines show convergence starting from scratch, the second two lines
convergence frame to frame without moving the object.

per frame. For the Augustus statue the solver finishes in 26ms.
While this does not lead to complete convergence, we can use the
result from the previous frame and the algorithm continues to con-
verge. After about 5-8 frames, convergence is reached.

In our videos, a latency is visible while moving the object, or mov-
ing the projectors. Note that this latency is not due to our solver,
but introduced by the tracking. Our tracking algorithm takes 4ms
to find a solution. While our algorithm is responsible for some of
the delay, the processing on the RGB-D camera itself contributes a
major part. Using a faster tracking (see [Sueishi et al. 2015]) the
user immersion of our system could be improved, at the cost of no
longer using off-the-shelf hardware.

Convergence of the Solver Figure 12 shows the convergence of
the solver for the statue and the board example. The solver reached
a stationary and correct solution in all our experiments within a
few GN iterations. In the first two lines, the solver starts from
scratch, the second two lines show convergence frame to frame
without moving the object. The occuring slight degradations in
the residuum are easily explained by the linear approximation of
the PCG and continuous slight changes from the object tracking.

(a) (b) (c)

Figure 13: (a) The real world surface texture and the projected
image to compensate. (b) Projection of the Siggraph logo on the
textured surface. Note the sheet of paper on the left, showing the
projected image. (c) Projecting the corrective image onto the tex-
tured surface. Note the corrective pattern on the sheet of paper on
the left.



(a) (b) (c) (d)

Figure 14: (a) A skull rendered within the bust from the viewer’s perspective. (b) The same rendering from a viewer position not aligned with
the tracked viewer. (c) Our method applied to the last of a shoe showing a potential product design application. (d) A shader-lamp (projector
with a rigidly mounted depth sensor).

These fluctuations however are not visible in the final projection.

Limitations The primary focus of our work is calculating the
light contribution of multiple projectors on arbitrary, known sur-
faces. However, there are surface effects that can impair the qual-
ity of projection mapping systems which are currently not handled.
We are confident that our implementation is extensible enough to
integrate published solutions to these problems. One example is
compensating surface textures. We implemented a simple color
correction approach to show this extensibility of our system (see
Figure 13). The Siggraph logo is projected onto an object with the
texture shown in Figure 13a (top). This results in the projection
depicted in Figure 13b. Note the white sheet of paper we added
to show the projected image on top of the textured surface. When
compensating the surface color, we project the pattern shown in
Figure 13a (bottom). The resulting effect is depicted in Figure 13c.
In general, color compensation of textured surfaces is challenging.
The original colors of the pattern cannot be determined easily and
the internal color processing behaviour of the projectors is unknown
as well. However, a multitude of literature on color compensation
for projection mapping exists [Bimber et al. 2005a; Law et al. 2011;
Grundhöfer 2013].

We currently do not correct for interreflection introduced by light
from the projectors. This leads to color bleeding (see Figure 15a)
and overexposed areas in concavities of the target object (see Fig-
ure 15b). One simple approach to alleviate this, is a less reflective
coating for the target object. However, we plan to use our system
for museum applications, where this is not possible. Hence, we
need to incorporate handling interreflections into our solver, which
introduces an enormous additional computational effort. We leave
this for a future work.

The third limitation regarding the target objects’ surfaces is their
reflectance. Currently we assume Lambertian surfaces. For con-
ductive and mirrorlike materials it is nearly impossible to perform
projection mapping. For rougher, non-conductive materials how-
ever, we are confident that a compensation of specular highlights
can be integrated into our system. Since this imposes a hard chal-
lenge, we also leave this for future work.

Another limitation of our system can be seen in Figure 15c. If the
3D model of the target object is not accurate enough, artifacts will
appear. This is especially problematic for objects with larger occlu-

(a) (b) (c)

Figure 15: (a) Since we do not correct for interreflection, color
bleeding is visible. (b) Some areas appear too bright. (c) If the
scan quality of the target object is not sufficient, the missalignment
becomes apparent (red arrows), especially for an object casting a
large shadow, as shown in. Note, that the soft shadow (blue arrows)
belongs to the rendering and is not an artifact.

sions or shadow casters, as these amplify the effect. In Figure 15c
the pole on the board is at slightly different positions in the 3D
model and the real world. This leads to visible artifacts along the
shadow borders (red arrows), as the second projector assumes the
shadow at a slightly different position. Note, the pole’s soft shadow
(blue arrows) belongs to the rendering and is not an artifact.

7 Discussion

In the previous section and the accompanying video we have shown
that with our implemented complete augmented reality system we
are able to create immersive user experiences. The seams between
projectors are invisible and shadowed regions are filled in real-time.
This enables the user to manipulate the complete setup while the
projection always shows correctly blended results. It would not
be possible to create this depth of immersion with only a single
projector as the resulting self-shadowing and limited field of view
breaks the illusion.

While moving the objects in the video small latency artifacts, es-
pecially around the nose (the red region in Figure 5a) occur. Due
to this and the convergence in only 5-8 frames, the reader might ar-
gue that our system is not real-time capable. However, these small
artifacts are only visible during movement in case of a very uni-
form projected texture (the Phong example in our video) and even
in these cases they immediately disappear when the object is sta-
tionary again. For projected textures with even a little bit of detail,
the effect is imperceptible. Also the biggest steps towards conver-
gence take place in the first 1-2 frames.



Another advantage of our system is the solver’s independence from
the surface color (see Section 4.3). By this means, we can project
animations onto the object that run arbitrarily fast, without the
multi-projection optimization becoming a limiting factor. Also, a
smoothing across the optimized luminance weights will not affect
the sharpness of the final projection.

Note that for our demonstration setup we chose a rather extreme
configuration of projectors to also show that our system handles
corner cases well. However, this introduces some small artifacts.
The projectors illuminate the object from two sides with a vertical
offset (see Figure 2 and Figure 1, right). This results in visible edges
on the object (e.g. the left temple of our Augustus statue) as the
upper projector can not reach this region due to self-shadowing (see
Figure 5). For a real-world setup a more conservative configuration
would be chosen to prevent such cases.

A limiting factor of our system proved to be the tracking. This is
visible in the ghosting while moving the objects or shader-lamps
in our video. The projections no longer look like they are glued to
the object. This however is not an artifact of the multi-projection
solver.

Our dynamic multi-projection mapping system can be adapted to
handle most projection mapping scenarios. However, under some
circumstances (e.g. scenes with known object movements or static
scenes) our more complex system is not needed. Also for scenar-
ios, which require an extremely fast tracking, better solutions ex-
ist. In general however, to create the level of immersion presented
throughout this paper, multiple projectors are required to illumi-
nate the complex geometry. While other works support multiple
projectors for static geometry, blending mostly is performed in the
space of the projector. To achieve the presented quality, our per-
pixel blending of projector light on the target geometry is crucial.
With the additional real-time capabilities of our system, we are
able to handle complex dynamic scenes with an unpreceded qual-
ity. The possiblity for projecting on dynamic scenes becomes ben-
eficial even in seemingly static setups. These setups’ calibrations
often tend to deteriorate due to accidental movement of the objects.
Our system is unsusceptible with respect to such movements.

8 Conclusion and Outlook

Our system leaves a lot of potential for the future. Not only the
previously described limitations could be remedied, but also com-
pletely new applications come to mind. For example, the inherently
dynamic setting of the Augmented Reality Sandbox presented by
Reed et al. [2014] could be extended to multiple projectors using
our system. Another very interesting field of future research could
be bringing works of lighting estimation and relighting in images
(see [Cossairt et al. 2008; Knecht et al. 2010; Nowrouzezahrai et al.
2011; Uday Mehta et al. 2015]) to projection mapping onto real
world objects. Also the light coming from the projector indirectly
illuminating the environment could be counteracted with such tech-
niques.

In this work we have presented a novel method for dynamically
augmenting physical scenes with multiple projectors. Our objec-
tive function incorporates the physical effects of light, the balanc-
ing of rays based on their expected projection quality and regular-
ization terms. We solve this function in a non-linear least squares
manner using a parallel Gauss-Newton solver, reaching real-time
frame-rates. Using this system we can freely move the illuminated
objects and projectors while maintaining the correct illumination at
all times, without the need for markers on the objects. This allows
us to create immersive experiences which can be seen best in our
video.
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GRUNDHÖFER, A. 2013. Practical non-linear photometric projec-
tor compensation. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2013 IEEE Conference on, IEEE.

HARRISON, C., BENKO, H., AND WILSON, A. D. 2011. Om-
nitouch: wearable multitouch interaction everywhere. In Pro-
ceedings of the 24th annual ACM symposium on User interface
software and technology, ACM, 441–450.



IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREE-
MAN, D., DAVISON, A., ET AL. 2011. Kinectfusion: real-time
3d reconstruction and interaction using a moving depth camera.
In Proc. UIST, ACM, 559–568.

JONES, B. R., BENKO, H., OFEK, E., AND WILSON, A. D. 2013.
Illumiroom: Peripheral projected illusions for interactive experi-
ences. In ACM SIGGRAPH 2013 Emerging Technologies, ACM,
New York, NY, USA, SIGGRAPH ’13, 7:1–7:1.

JONES, B., SODHI, R., MURDOCK, M., MEHRA, R., BENKO,
H., WILSON, A., OFEK, E., MACINTYRE, B., RAGHUVAN-
SHI, N., AND SHAPIRA, L. 2014. Roomalive: Magical expe-
riences enabled by scalable, adaptive projector-camera units. In
Proceedings of the 27th Annual ACM Symposium on User Inter-
face Software and Technology, ACM, NY, USA, UIST ’14.

KASPAR, A., AND DENG, B. 2015. Real-time deformation of
constrained meshes using gpu. In GPU Computing and Applica-
tions, Y. Cai and S. See, Eds. Springer Singapore, 15–34.

KNECHT, M., TRAXLER, C., MATTAUSCH, O., PURGATHOFER,
W., AND WIMMER, M. 2010. Differential instant radiosity for
mixed reality. In Proceedings of the 2010 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR 2010),
99–107. Best Paper Award!

KONIECZNY, J., AND MEYER, G. W. 2006. Material and color
design using projectors. In CGIV’06, 438–442.

LAW, A. J., ALIAGA, D. G., SAJADI, B., MAJUMDER, A., AND
PIZLO, Z. 2011. Perceptually based appearance modification
for compliant appearance editing. In Computer Graphics Forum,
vol. 30, Wiley Online Library, 2288–2300.

LEE, J. C., DIETZ, P. H., MAYNES-AMINZADE, D., RASKAR,
R., AND HUDSON, S. E. 2004. Automatic projector calibra-
tion with embedded light sensors. In Proceedings of the 17th
annual ACM symposium on User interface software and tech-
nology, ACM, 123–126.

LEE, J. C., HUDSON, S. E., AND TSE, E. 2008. Foldable interac-
tive displays. In Proceedings of the 21st annual ACM symposium
on User interface software and technology, ACM, 287–290.

MAJUMDER, A., AND BROWN, M. S. 2007. Practical multi-
projector display design. AK Peters USA.

MOLYNEAUX, D., IZADI, S., KIM, D., HILLIGES, O., HODGES,
S., CAO, X., BUTLER, A., AND GELLERSEN, H. 2012. In-
teractive environment-aware handheld projectors for pervasive
computing spaces. In Pervasive Computing. Springer, 197–215.

NEWCOMBE, R. A., DAVISON, A. J., IZADI, S., KOHLI, P.,
HILLIGES, O., SHOTTON, J., MOLYNEAUX, D., HODGES, S.,
KIM, D., AND FITZGIBBON, A. 2011. Kinectfusion: Real-time
dense surface mapping and tracking. In Proc. ISMAR, IEEE.
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