Scan2CAD: Learning CAD Model Alignment in RGB-D Scans
Armen Avetisyan1     Manuel Dahnert1     Angela Dai2     Angel X. Chang3     Manolis Savva3     Matthias Nießner1    
    1Technical University of Munich     2Stanford University     3Princeton University
Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, June 2019 (Oral)
Abstract

We present Scan2CAD, a novel data-driven method that learns to align clean 3D CAD models from a shape database to the noisy and incomplete geometry of a commodity RGB-D scan. For a 3D reconstruction of an indoor scene, our method takes as input a set of CAD models, and predicts a 9DoF pose that aligns each model to the underlying scan geometry. To tackle this problem, we create a new scan-to-CAD alignment dataset based on 1506 ScanNet scans with 97607 annotated keypoint pairs between 14225 CAD models from ShapeNet and their counterpart objects in the scans. Our method selects a set of representative keypoints in a 3D scan for which we find correspondences to the CAD geometry. To this end, we design a novel 3D CNN architecture that learns a joint embedding between real and synthetic objects, and from this predicts a correspondence heatmap. Based on these correspondence heatmaps, we formulate a variational energy minimization that aligns a given set of CAD models to the reconstruction. We evaluate our approach on our newly introduced Scan2CAD benchmark where we outperform both handcrafted feature descriptor as well as state-of-the-art CNN based methods by 21.39%.